Государственное автономное образовательное учреждение дополнительного образования «Центр для одаренных детей «Поиск»

УТВЕРЖДЕНО приказом Центра «Поиск» № 133 от 25 марта 2025 г.

Дополнительная общеобразовательная общеразвивающая программа естественнонаучной направленности

«ГЕНЕТИКА РАСТЕНИЙ И АГРОБИОЛОГИЯ»

Направление: наука

Возраст обучающихся: 14-17 лет

Объем программы: 136 часов

Срок освоения: 1 год

Форма обучения: очная

Авторы программы: Оганджанян А.А, педагог регионального центра

выявления, поддержки и развития способностей и

талантов детей и молодёжи "Сириус 26"

ОГЛАВЛЕНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	1
1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОГРАММЫ	2
2. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ	
ПРОГРАММЫ	8
УЧЕБНЫЙ ПЛАН	10
КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК	11
РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕНЕТИКА РАСТЕНИЙ И	
АГРОБИОЛОГИЯ»	12
СОДЕРЖАНИЕ КУРСА «ГЕНЕТИКА РАСТЕНИЙ И АГРОБИОЛОГИЯ»	17
ОЦЕНОЧНЫЕ МАТЕРИАЛЫ	35
МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ	37
КАДРОВОЕ ОБЕСПЕЧЕНИЕ	48
ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ Д.	ЛЯ
ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО КУРСУ	48
УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	
ПРОГРАММЫ	50
ПРИЛОЖЕНИЕ 1	54

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Современная генетика и биотехнология занимают ведущее положение в системе биологических, сельскохозяйственных, ветеринарных и зоотехнических исследований, представляют собой новую форму промышленной технологии, которой биологические объекты основу составляют растительного происхождения. В последние десятилетия существенно расширился список ценных биотехнологических продуктов. В генетике растений видят одно из средств для преодоления продовольственных, энергетических, сырьевых, экологических и медицинских проблем. Большое значение, которое придается агрогенетике и биотехнологии в нашей стране и во всем мире, обуславливает необходимость подготовки достаточного количества квалифицированных кадров.

Содержание и структура курса обеспечивают выполнение требований к уровню подготовки учащихся, развитие научного мировоззрения и позволяет взглянуть на научные достижения с другой стороны. Программа способствует углублению знаний учащихся, выработке дополнительных умений и навыков работы с биологическими объектами, познакомиться с генетическими технологиями и методами выращивания растений.

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОГРАММЫ

1.1. Направленность программы

Дополнительная общеобразовательная общеразвивающая программа «Генетика растений и агробиология» имеет естественнонаучную направленность.

1.2. Адресат программы

Программа адресована обучающимся от 14 до 17 лет.

Программа предназначена для одаренных школьников 8-10 классов, проявляющих повышенный интерес к биологии, химии, анализу данных.

Возрастная категория обучающихся – разновозрастная.

Необходимы базовые знания по следующим школьным предметам: биология, химия, экология, математика.

Наличие определенной физической и практической подготовки для изучения учебной программы не требуется.

1.3. Актуальность программы

Дополнительная общеобразовательная общеразвивающая программа «Генетика растений и агробиология» развивает интерес к сознательному использованию такого важного направления как биотехнологии в реальной жизни.

Программа ориентирована на формирование опыта практической работы подростков в конкретной деятельности, что позволяет обучающимся соотнести свои индивидуальные особенности и возможности с требованиями, которые предъявляются к данной профессиональной деятельности в современных условиях.

Программа имеет профориентационную направленность в области генетики и биотехлогии, яркие и убедительные примеры из научной литературы и жизни позволяют убедить школьников в огромной роли науки и человека во всемирных процессах.

Предлагаемая рабочая программа отражает особенности вовлечения школьников в биологическую и научную деятельность. Программа рассчитана на школьников, которые уверенно владеют основами биологии, экологии, генетики.

1.4. Отличительные особенности/новизна программы

Изучение генетики растений и агробиологии должно дать обучающимся знания о многообразии генетических методов применимых к растениям, способствовать представлению об участии растений в круговороте веществ и энергии в природе, стать основой для изучения общебиологических дисциплин. В настоящее время в генетике и биотехнологии видят одно из средств для преодоления продовольственных, энергетических, сырьевых, экологических и медицинских проблем. Отличительной особенностью данной программы является уход от традиционных репродуктивных практик и технологий «выталкивающей модели» образования, «сухой» теории и отсутствия связи с практической «Вытягивающая деятельностью. модель» построена на интерактивных методов взаимодействия обучающихся применении наставника, командной работе, решении кейсовых заданий из области генетики, биологии, погружении в исследовательскую и проектную деятельность с использованием элементов проблемного обучения.

- программа строится на основе развивающего обучения;
- программа направлена на развитие естественнонаучного мышления учащихся;
- содержание и методика курса нацелены на раннюю профессиональную ориентацию обучающихся;
- программа допускает возможность корректировки и видоизменения тематического содержания в процессе обучения, что обусловлено личными целями обучающегося, личностным содержанием его образования, рефлексией обучающегося, выводящей его на самоконтроль и самооценку.

Программа ориентирована на широкий междисциплинарный подход.

Уровень освоения программы – базовый.

1.5 Объем и срок освоения программы

Объем программы – 136 часов.

Срок реализации программы – 1 год.

1.6 Цели и задачи программы

Целью программы является организация продуктивной деятельности одаренных школьников Ставропольского края, направленной на интеллектуальное развитие личности учащихся, опираясь на изучение генетики, биологии, экологии и химии.

Задачи программы

1. Обучающие:

На основе имеющиеся у обучающихся знаний и умений углубить и систематизировать познания в области генетики, биологии, экологии, биоинформатике.

- освоить основные генетические и биотехнологические термины,
- научить практическим навыкам работы с растительными объектами,
- освоить современные методы выращивания, клонирования растений и генетические аспекты их использования,
- знать структуру молекулярно-генетической лаборатории,
- освоить методы биоинформатики.

2. Развивающие:

Обучающиеся в процессе изучения образовательной программы получат возможность:

-развивать культуру здорового и безопасного образа жизни;

- -осуществить социализацию и адаптацию к жизни в современном обществе;
- развить психофизиологические качества: память, воображение, внимание;
- получить профессиональную ориентацию при наличии интереса к биологии человека и медицине;
- получить навыки эффективной деятельности в индивидуальной и командной работе.

3. Воспитательные:

В процессе изучения образовательной программы:

- повысить уровень самоанализа и критическое мышление;
- развить качества мышления, необходимые для адаптации в современном обществе;
- уметь ответственно оценивать свои учебные достижения, черты своей личности, учитывать мнение других людей при определении собственной позиции в самооценке:
- уметь соотносить приложенные усилия с полученными результатами своей деятельности;
 - приобрести целеустремленность, навыки самоорганизации;
- расширить позитивное, ценностное отношение к природе, собственному
 здоровью и здоровью других людей;
- воспитать качества личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- воспитать убежденность в возможности познания законов природы и использования достижений науки на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественно-научного содержания, готовности к морально-этической оценке использования научных достижений.

1.7. Планируемые результаты освоения программы

- 1. Предметные результаты:
- работает с учебным комплексом по генетике и биотехнологии, владеет теоретическими знаниями (по основным разделам учебного плана программы), системой понятий;
 - владеет специальной терминологией;
 - знает правила и алгоритмов деятельности;
 - использует принципы классификации биологических процессов;
- оценивает эффективность мероприятий по использованию новых методов и технологий;
- использует нормы и правила рационального использования генетических ресурсов;
- способен оценить эффективность генетических модификаций растительных организмов и использование новых методов и технологий;
 - освоил способы решения проблем творческого и поискового характера;
- планирует, контролирует и оценивает учебные действия в соответствии с поставленной задачей и условиями ее реализации; определяет наиболее эффективные способы достижения результата;
 - правильно формулирует и ставит цели и задачи, контролирует сроки;
 - применяет и проводит рефлексию и саморефлексию.
 - 2. Метапредметные результаты:
- владеет программным принципами работы компьютерных технологий при создании творческих работ;
- знает назначение и функции, используемых информационных и коммуникационных технологий;
- знает методы теоретического и экспериментального исследования биотехнологических источников;
 - знает основные классификации биотехнологических источников;

- знает нормы и правила рационального использования природных ресурсов;
 - знает основные законы биологии, химии, экологии;
 - знает основные методы биоинформатики.
 - 3. Личностные результаты:
- владеет культурой мышления, способностью к обобщению, анализу,
 восприятию информации, постановке цели и выбору путей ее достижения;
- умеет логически, верно, аргументировано и ясно строить устную и письменную речь;
 - готов к работе в коллективе;
- умеет использовать нормативно-правовые документы в своей деятельности;
- обладает навыками продуктивного сотрудничества в работе в команде, проявления толерантности и ответственности, адаптации к изменяющимся условиям;
 - стремится к саморазвитию и адаптации к жизни;
- умеет критически оценивать свои достоинства и недостатки, намечать пути и выбирать средства развития достоинств и устранения недостатков;
- осознаёт социальной значимости своей будущей профессии, обладание высокой мотивацией к выполнению профессиональной деятельности;
- –осознаёт сущность и значение информации в развитии современного общества;
- –владеет основными методами, способами и средствами получения, хранения, переработки информации;
 - –способен работать с информацией в глобальных компьютерных сетях;
 - –владеет навыками безопасного поведения в информационной среде.

2. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

2.1. Язык реализации программы

Реализация дополнительной общеобразовательной общеразвивающей программы «Генетика растений и агробиология» осуществляется на государственном языке Российской Федерации (на русском языке).

2.2. Форма обучения:

- очная

2.3. Особенности реализации программы

Программа реализуется по модульному принципу.

2.4. Условия набора и формирования групп

Условия набора обучающихся.

На обучение зачисляются обучающиеся 8-10 классов общеобразовательных организаций Ставропольского края.

Зачисление на обучение по программе осуществляется по результатам конкурсного отбора в соответствии с Правилами приема обучающихся в Центр «Поиск» на 2025-2026 учебный год.

Условия конкурсного отбора гарантируют соблюдение прав обучающихся в области дополнительного образования и обеспечивают зачисление наиболее способных и подготовленных обучающихся к освоению программы.

Количество обучающихся: 12 человек.

Условия формирования групп: разновозрастная.

2.5. Формы организации и проведение занятий

Формы организации занятий: аудиторные (под непосредственным

руководством преподавателя).

Формы проведения занятий:

- теоретические;
- практические;
- контрольные (беседа, выполнение манипуляций).

Формы организации деятельности обучающихся:

фронтальная: беседа-дискуссия на основе теоретического материала;

коллективная (ансамблевая): организация проблемно-поискового или творческого взаимодействия между всеми детьми одновременно.

индивидуальная: изучение манипуляций.

Режим занятий: очная форма обучения: 8-10 классы — 4 урока (по 4 урока 1 раз в неделю). Программа реализуется в г. Ставрополе.

учебный план

	Наученования можиля	Ko	личество часо		
N₂	Наименование модуля, учебного курса	Теория	Практика	Всего	Форма контроля/ аттестации
1.	Модуль 1. Общие понятия в генетике растений и агробиологии.	30	30	60	Контрольный тест и круглый стол «Научное мышление»
2.	Модуль 2. Закономерности эволюции и передачи генетического материала. Генетическая инженерия. Биоинформатика.	38	38	76	Контрольный тест
	Итого:	68	68	136	

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Наименование	Год	Дата	Дата	Количество	Количество	Количество	Режим занятий
модуля, учебного	обучения	начала	окончания	учебных	учебных	учебных	
курса		обучения	обучения	недель	дней	часов	
Модуль 1. Общие	1 год	08.09.2025	27.12.2025	15	15	60 ч.	по 4 урока 1 раз
понятия в генетике	обучения						в неделю
растений и							
агробиологии.							
Модуль 2.		12.01.2026	28.05.2026	19	19	76 ч.	по 4 урока 1 раз
Закономерности							в неделю
эволюции и передачи							
генетического							
материала.							
Генетическая							
инженерия.							
Биоинформатика.							

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА

«Генетика растений и агробиология»

8-10 классы

Курс «Генетика растений и агробиология» предназначен для обучающихся 8-10 классов.

В результате освоения учебного курса обучающийся должен:

Знать:

- об основных группах растений, их классификации, строение и функции;
- значение генетики растений в жизни человека и животных;
- о многообразии генетических модификаций растений;
- знать порядок работы в лаборатории генетических технологий;
- микроскопическими, культуральными, генетическими и биохимическими методами исследования;
- правилами отбора, доставки и хранения биоматериалов;
- методами стерилизации и дезинфекции;
- методами выделения, очистки и анализа растительной ДНК.

Уметь:

- уметь пользоваться оборудованием в лаборатории генетики;
- правильно рассчитывать состав буферных растворов для растительных образцов;
- уметь выделять ДНК различными способами;
- работать с базами данных научной литературы;
- уметь работать с растительными объектами в лаборатории;
- соблюдать правила стерильной работы в лаборатории.

Тематический план учебного курса

No	Наименование кейса, темы	F	Количество ч	Формы контроля					
		Теория	Практика	Всего					
	Модуль 1. Общие понятия в генетике растений и агробиологии.								
1.	Биотехнология как наука. Взаимосвязь генетики и биотехнологии с другими науками и отраслями промышленности.	2	2	4	Беседа				
2.	Жизненный цикл высших растений. Основные этапы онтогенеза (эмбриональный, ювенильный, репродуктивный, зрелости, старения), их морфологические, физиологические и метаболические особенности	2	2	4	Беседа, Контрольный тест				
3.	Роль растений в круговороте минеральных элементов в биосфере. Потребности растений в элементах минерального питания. Содержание и соотношение минеральных элементов в почве и в растениях и факторы, их определяющие. Классификация элементов, необходимых для растений.		2	4	Контрольный тест				
4.	Определение понятий "рост" и "развитие" растений. Общие закономерности роста, типы роста у растений. Организация меристем корня и стебля. Рост и деятельность меристем	2	2	4	Беседа, Контрольный тест				
5.	Дифференцировка клеток и тканей: компетенция и детерминация. Дифференциальная экспрессия генома как фактор реализации генетических программ развития. Тотипотентность растительной клетки.	2	2	4	Беседа, Контрольный тест				
6.	Системы регуляции функций целого растения: трофическая, гормональная, электрическая. Фитогормоны (ауксины, гиббереллины, цитокинины, абсцизовая кислота, этилен, брассиностероиды), их строение, биосинтез, транспорт,	2	2	4	Контрольный тест				

	физиологическое действие использование в современных технологиях.								
7.	Влияние света на процессы роста и развития растений. Фитохромная и криптохромная системы регуляции.	2	2	4	Беседа, выполнение лабораторной работы				
8.	Устойчивость растений к неблагоприятным факторам. Устойчивость как приспособление растений к условиям существования. Ответные реакции растений на действие неблагоприятных факторов. Общие принципы адаптивных реакций растений на экологический стресс (изменение экспрессии генов и включение синтеза стрессовых, мембранных, структурных белков; перестройки мембранных систем и физиологических процессов; синтез протекторных соединений). Пути повышения устойчивости растений	2	2	4	Беседа.				
9.	Сельское хозяйство в современном мире, тенденции развития.	4	4	8	Контрольный тест.				
10.	Устройство молекулярно- генетической лаборатории . Основные методы филогенетического анализа растений.	4	4	8	Беседа, выполнение лабораторной работы.				
11.	Генетика сельскохозяйственных растений (часть 1). Методы выделения и очистки растительной ДНК.	6	6	12	Выполнение практической и лабораторной работы.				
	Итого:	30	30	60					
Mo	Модуль 2. Закономерности эволюции и передачи генетического материала. Генетическая инженерия. Биоинформатика.								
1.	Генетика сельскохозяйственных растений (часть 2). Амплификация и клонирование ДНК.	6	6	12	Выполнение практической и лабораторной работы.				
2.	Фенотипическая и генотипическая изменчивость растений. Мутационная природа изменчивости. Частота мутаций и типы мутаций.	4	4	8	Беседа				

	Значение мутаций. Перспективы генной инженерии. Значение генетической инженерии.				
3.	Суть и значение генной и клеточной инженерии. Этапы получения гибридных клеток. Возможности метода слияния клеток. Гибридомная технология. Выведение новых и улучшение существующих сортов растений.	2	2	4	Беседа, выполнение лабораторной работы.
4.	Культура изолированных зародышей, органов, тканей, клеток, протопластов как модель для изучения процессов роста и развития. Использование метода культуры клеток для изучения биологии клетки	2	2	4	Беседа, Контрольный тест
5.	Генетические ресурсы РФ.	2	2	4	Беседа, выполнение лабораторной работы, Контрольный тест.
6.	Выведение новых и улучшение существующих сортов растений.	2	2	4	Беседа
7.	Взаимосвязь генетических процессов и их влияние на эволюцию растений.	2	2	4	Беседа, Контрольный тест
8.	Молекулярное клонирование и методы генной инженерии для повышения урожайности и сопротивляемости сельхозкультур к болезням.	2	2	4	Контрольный тест
9.	Секвенирование ДНК. История, эволюция методов.	2	2	4	Контрольный тест, выполнение лабораторной работы
10.	Биоинформатика в агрогенетике. Паспортизация сельскохозяйственных растений.	4	4	8	Беседа
11.	Биоинформатика в агрогенетике. Анализ результатов секвенирования, подбор праймеров и работа с сайтом NCBI.	2	2	4	Практическая работа.
12.	Биотехнология на службе народного хозяйства, здравоохранения и науки.	2	2	4	Беседа.

13.	Пути повышения эффективности фотосинтетических систем. Биотопливные элементы.	2	2	4	Контрольный тест
14.	Генетика и экология микроорганизмов. Определение понятий наследственности и изменчивости микроорганизмов.	2	2	4	Беседа, Контрольный тест
15.	Texнологии введения в культуру In vitro различных первичных эксплантов растений		2	4	Практическая работа в лаборатории.
	Итого	38	38	76	
	итого:	68	68	136	

СОДЕРЖАНИЕ КУРСА «Генетика растений и агробиология»

Модуль 1. Общие понятия в генетике растений и агробиологии.

Раздел 1. Биотехнология как наука. Взаимосвязь генетики и биотехнологии с другими науками и отраслями промышленности.

Теория:

Генетика биотехнология Взаимосвязь И как наука. генетики биотехнологии с другими науками и отраслями промышленности. Стадии биотехнологии агрогенетики И биотехнологии. Значение развития обществе будущем. Природа многообразие современном И В И биотехнологических процессов. Достижения агрогенетики. Перспективы развития агрогенетики растений.

Практика: выполнение индивидуального задания.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- –репродуктивный,
- -частично-поисковый,
- –практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория генетических технологий, биотехнологии и микроклонирования.

Форма подведения итогов: беседа, учебный фильм « Агрогенетика».

Раздел 2. Жизненный цикл высших растений. Основные этапы онтогенеза (эмбриональный, ювенильный, репродуктивный, зрелости, старения), их морфологические, физиологические и метаболические особенности.

Теория:

Фенотипическая и генотипическая изменчивость прокариот. Мутационная

природа изменчивости. Частота мутаций и типы мутаций. Рекомбинация генетического материала прокариот: трансформация, трансдукция, коньюгация. Значение мутаций. Перспективы генной инженерии. Значение генетической инженерии. Получение гена. Введение гена в вектор. Перенос генов в клетки организма реципиента. Идентификация клеток-реципиентов. Генетическая инженерия и конструирование новых организмов-продуцентов

Практика: выполнение индивидуального лабораторного задания.

Основные методы и формы реализации содержания программы:

- -информационно-рецептивный,
- –репродуктивный,
- -частично-поисковый,
- -практический.

Средства обучения;

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования:

Микроскопы, учебный фильм» Онтогенез растений»

Форма подведения итогов: выполнение индивидуального задания. Тесты

Раздел 3. Роль растений в круговороте минеральных элементов в биосфере. Потребности растений в элементах минерального питания. Содержание и соотношение минеральных элементов в почве и в растениях и факторы, их определяющие. Классификация элементов, необходимых для растений.

Теория:

Растительность постоянно всасывает часть минеральных веществ из почвы и передаёт их животным. Животные после отмирания передают минеральные вещества обратно в почву, откуда они снова всасываются растениями. Таким образом, растения в процессе вымывания как бы изымают минеральные соли и постоянно поддерживают их присутствие в почве, что важно для её плодородия

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- -практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов

Раздел 4. Определение понятий "рост" и "развитие" растений. Общие закономерности роста, типы роста у растений. Организация меристем корня и стебля. Рост и деятельность меристем.

Теория:

Развитие растений — это совокупность качественных морфологических и физиологических изменений растений на отдельных этапах его жизни, обусловленных внутренними особенностями организма и влиянием внешних факторов. Примеры: прорастание семян, распускание почек, образование вегетативных и репродуктивных органов, цветение, плодоношение и т.п..

Культура изолированных зародышей, органов, тканей, клеток, протопластов как модель для изучения процессов роста и развития. Пути практического использования культуры растительных клеток (освобождение от вирусных инфекций, массовое размножение, сохранение генофонда редких видов, получение биомассы клеток-продуцентов практически важных веществ).

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

–информационно-рецептивный,

- -репродуктивный,
- -частично-поисковый,
- –практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Раздел 5. Дифференцировка клеток и тканей: компетенция и детерминация. Дифференциальная экспрессия генома как фактор реализации генетических программ развития. Тотипотентность растительной клетки.

Теория:

Процесс развития специализированных клеточных типов из одного оплодотворенного яйца называется дифференцировкой. Дифференцировке предшествует процесс, называемый детерминацией, в течение которого определяется судьба клеток. Возникновение качественных различий между частями развивающегося организма на стадиях, предшествующих появлению морфологически различимых закладок органов и тканей.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- -репродуктивный,
- –частично-поисковый,
- –практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов

Форма подведения итогов: практическая работа. Обсуждение результатов

Раздел 6. Системы регуляции функций целого растения: трофическая, гормональная, электрическая. Фитогормоны (ауксины, гиббереллины, цитокинины, абсцизовая кислота, этилен, брассиностероиды), их строение, биосинтез, транспорт, физиологическое действие использование в современных технологиях.

Теория. Взаимодействие с помощью питательных веществ — наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов — продуктов, образующихся в листьях в процессе фотосинтеза. В свою очередь, надземные части нуждаются в минеральных веществах и воде, поглощаемых корнями из почвы. Фитогормоны — ауксин, цитокинины, гиббереллины, абсцизовая кислота, этилен — присутствуют в тканях в очень низких концентрациях и служат важнейшим фактором регуляции и управления у растений. Возникновение градиентов биоэлектропотенциалов между разными частями растения и генерацию распространяющихся потенциалов (потенциала действия и вариабельного потенциала).

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: выполнение практического задания. Подведение итогов.

Раздел 7. Влияние света на процессы роста и развития растений. Фитохромная и криптохромная системы регуляции. Фитохромная система регуляции позволяет растению реагировать на воздействие красных и дальних красных лучей. Фитохром может регулировать прорастание семян, деэтилирование, цветение, опадение листьев и даже старение. Криптохромная система регуляции отвечает за восприятие синего и ультрафиолетового света. Криптохромы контролируют процессы удлинения стебля, рост листьев, циркадные ритмы и цветение.

Теория:

Свет играет важную роль в процессах роста и развития растений. Он служит и источником энергии для фотосинтеза, и сигналом, участвующим в регуляции жизнедеятельности растений.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- -практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов

Раздел 8. Устойчивость растений к неблагоприятным факторам. Устойчивость как приспособление растений к условиям существования. Ответные реакции растений на действие неблагоприятных факторов. Общие принципы адаптивных реакций растений на экологический стресс (изменение экспрессии генов и включение синтеза стрессовых, мембранных, структурных белков;

перестройки мембранных систем и физиологических процессов; синтез протекторных соединений). Пути повышения устойчивости растений

Теория. Приспособление растений к условиям существования обеспечивается за счёт физиологических механизмов (физиологическая адаптация) и генетической изменчивости, наследственности и отбора (генетическая адаптация).

Практика:

практическая работа по устойчивости растений к низким и высоким температурам.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: выполнение практического задания. Подведение итогов.

Форма подведения итогов: практическая работа. Обсуждение результатов

Раздел 9. Сельское хозяйство в современном мире, тенденции развития.

Теория:

Современные агрономические приемы и методы выращивания наиболее значимых сельскохозяйственных культур. Тема охватывает такие направления как растениеводство, животноводство, агроэкологию, агроинженерию, агрохимию и другие смежные области.

Практика: выполнение индивидуального задания.

Основные методы и формы реализации содержания программы:

- -информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- -практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория генетических технологий, биотехнологии и микроклонирования.

Форма подведения итогов: беседа, учебный фильм «Развитие сельского хозяйства».

Раздел 10. Устройство молекулярно-генетической лаборатории . Основные методы филогенетического анализа растений.

Теория. Для анализа используются последовательности генов в каждом из трёх растительных геномов — ядерном, митохондриальном и пластидиальном. Для этого применяются методы парсимонии и Байесовского филогенетического анализа. Генетический банк NCBI, программы по обработке результатов секвенирования.

Практика:

практическая работа по компьютерному моделированию модификации сельскохозяйственных культур.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: выполнение практического задания. Подведение итогов.

Раздел 11. Генетика сельскохозяйственных растений (часть 1). Методы выделения и очистки растительной ДНК.

Теория:

История становления методов выделения и очистки ДНК. Основыные этапы выделения ДНК, буферные растворы и их влияние на качество выделенной ДНК.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- -практический.

Средства обучения:

Учебный комплекс: лаборатория генетики.

Форма подведения итогов: практическая работа. Обсуждение результатов

Форма подведения итогов: практическая работа. Обсуждение результатов

Модуль 2. Закономерности эволюции и передачи генетического материала. Генетическая инженерия. Биоинформатика.

Раздел 1. Генетика сельскохозяйственных растений (часть 2). Амплификация и клонирование ДНК.

Теория.

Типы амплификации, эволюция методов клонирования растительной ДНК, методики проведения ПЦР и ее анализа.

Практика:

– выполнение индивидуального задания в лаборатории генетики.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Учебный комплекс: лаборатория генетики.

Форма подведения итогов: практическая работа.

Раздел 2. Фенотипическая и генотипическая изменчивость растений. Мутационная природа изменчивости. Частота мутаций и типы мутаций. Значение мутаций. Перспективы генной инженерии. Значение генетической инженерии.

Теория.

Мутации и их влияние на эволюцию. Частота и типы мутаций, рекомбинации генетического материала, обмен генетического материала между микроорганизмами.

Практика:

- выполнение индивидуального задания.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Учебный комплекс: лаборатория генетики, биотехнологии и микроклонирования.

Форма подведения итогов: выполнение индивидуального задания.

Раздел 3. Суть и значение генной и клеточной инженерии. Этапы получения гибридных клеток. Возможности метода слияния клеток. Гибридомная технология. Выведение новых и улучшение существующих сортов растений.

Теория. ГМО история и эволюция метода, генная инженерия. Предполагаемый механизм репликации бактериальной хромосомы. Плазмиды, их функции.

Практика:

– практическая работа.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: выполнение практического задания.

Раздел 4. Культура изолированных зародышей, органов, тканей, клеток, протопластов как модель для изучения процессов роста и развития. Использование метода культуры клеток для изучения биологии клетки.

Теория. Культурой клеток, тканей и органов растений, выращивание отдельных клеток, а также тканей и органов на искусственной питательной среде в асептических условиях, культура клеток высших растений.

Практика:

– практическая работа по технологии введения в культуру Invitro различных первичных эксплантов растений.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: выполнение практического задания. Подведение итогов. Фонд биологических и биоресурсных коллекций.

Раздел 5. Генетические ресурсы РФ.

Теория. История инвентаризации генетических ресурсов страны, создание линии сельскохозяйственных растений. Национальные коллекции особо ценных образцов генетических ресурсов.

Практика:

 практическая работа по технологии введения в культуру Invitro различных первичных эксплантов растений.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: выполнение практического задания. Подведение итогов.

Раздел 6. Выведение новых и улучшение существующих сортов растений.

Теория:

Современный взгляд на эволюцию растений. Основные этапы эволюции и филогении растений. Эволюция сортов сельскохозяйственных растений.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- -информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- -практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов Раздел 7. Взаимосвязь генетических процессов и их влияние на эволюцию растений.

Теория. Современный взгляд на эволюцию растений. Основные этапы эволюции и филогении растений.

Практика:

– построение филогенетического древа родства.

Основные методы и формы реализации содержания программы:

- информационно-рецептивный,
- репродуктивный,
- частично-поисковый,
- практический.

Средства обучения:

Программное обеспечение:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: выполнение практического задания. Подведение итогов.

Раздел 8. Молекулярное клонирование и методы генной инженерии для повышения урожайности и сопротивляемости сельхозкультур к болезням.

Теория:

Создание генетически модифицированных культур, устойчивых к вредителям, болезням и факторам окружающей среды.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- -информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- –практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов **Раздел 9.** Секвенирование ДНК. История, эволюция методов.

Теория:

История секвенирования ДНК. Использование ДНК-полимеразы и радиоактивно меченых нуклеотидов. Пиросеквенирование. Секвенирование на молекулярных кластерах.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

–информационно-рецептивный,

- -репродуктивный,
- -частично-поисковый,
- –практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов Раздел 10. Биоинформатика в агрогенетике. Паспортизация сельскохозяйственных растений.

Теория:

Генетический банк NCBI, программы по обработке результатов секвенирования.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- -информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- –практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов **Раздел 11.** Биоинформатика в агрогенетике. Анализ результатов секвенирования, подбор праймеров и работа с сайтом NCBI.

Теория:

Создание генетически модифицированных культур, устойчивых к вредителям, болезням и факторам окружающей среды. ПЦР по конечной точне и real-time ПЦР. Работа в генетическом банке NCBI.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- –практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов **Раздел 12.** Биотехнология на службе народного хозяйства, здравоохранения и науки.

Теория:

Применение трансгенных культур, биологические средства защиты растений, бактериальные удобрения. Медицинские биопрепараты, исследуют стволовые клетки и возможности их использования, проводят генную и клеточную терапию.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- –практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов **Раздел 13.** Пути повышения эффективности фотосинтетических систем. Биотопливные элементы.

Теория:

Увеличение площади листьев и их раннее формирование. Увеличение скорости роста растений за счёт оптимизации водного и минерального питания. Установление оптимального соотношения между функционирующими реакционными центрами хлорофилла и промежуточными переносчиками электронов.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- -информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- -практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов **Раздел 14.** Генетика и экология микроорганизмов. Определение понятий наследственности и изменчивости микроорганизмов.

Теория:

Ненаследственная Изменчивость микроорганизмов. (средовая, модификационная) изменчивость обусловлена внутривлиянием внеклеточных факторов проявление Наследственная на генотипа. (генотипическая) изменчивость, связанная с мутациями, — мутационная изменчивость.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- -репродуктивный,

- -частично-поисковый,
- –практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов **Раздел 15.** Технологии введения в культуру In vitro различных первичных эксплантов растений

Теория:

Культура изолированных зародышей, органов, тканей, клеток, протопластов как модель для изучения процессов роста и развития. Отбор эксплантов, их стерилизация. Подбор и оптимизация состава питательной среды. Собственно микроразмножение. Укоренение микропобегов в стерильных условиях.

Практика:

– выполнение лабораторной работы.

Основные методы и формы реализации содержания программы:

- –информационно-рецептивный,
- –репродуктивный,
- -частично-поисковый,
- -практический.

Средства обучения:

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма подведения итогов: практическая работа. Обсуждение результатов

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Данные оценочные материалы предназначены для объективной оценки уровня сформированных знаний у обучающихся во время изучения программы «Биотехнологии и микроклонирование растений».

Входной контроль — проводится с каждым обучающимся индивидуально с целью проверки базовых знаний по биологии. Форма проведения - тестирование разного уровня сложности отдельно для обучающихся 8, 9, 10 классов.

Текущий контроль осуществляется на занятиях в течение всего обучения для отслеживания уровня освоения учебного материала программы.

Формы:

- опрос теоретического материала,
- контрольные тесты,
- выполнение манипуляций в лаборатории,
 - анализ педагогом качества выполнения практических работ по выполнению манипуляций в лаборатории.

Промежуточная аттестация проводится с целью выявления уровня освоения программ обучающимися и уровня развития личностных качеств по завершению каждого курса программы.

Формы:

- опрос теоретического материала,
- контрольные тесты,
- практическая работа в лаборатории.

Итоговое оценивание проводится в конце обучения по курсу.

Учебный комплекс: лаборатория микробиологии, биотехнологии и микроклонирования.

Форма:

- участие в круглом столе «Биотехнология наука будущего»;
- анализ и обобщение данных об освоении программы обучающихся, участия в олимпиадах, конкурсах, соревнованиях;
- анкетирование обучающихся и родителей с целью выявления степени удовлетворенности образовательным процессом в коллективе и учреждении.

Оценка	Результат
Начальный уровень	обучающийся имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения последовательности в изложении программного материала.
Средний уровень	обучающийся твердо знает программный материал, грамотно и по существу его излагает, не допускает существенных неточностей в ответе на вопросы, правильно применяет теоретические положения при решении практических задач и выполнении манипуляций.
Высокий уровень	обучающийся грамотно, последовательно, логически стройно и исчерпывающе излагает материал, при этом в его ответе тесно увязывается теория и практика; не испытывает затруднения с ответом при видоизменении задания, свободно справляется с задачами, вопросами и другими видами применения знаний.

Итоговое оценивание проводится в конце обучения по курсу.

Форма: итоговое сообщение результатов собственных исследований.

Варианты контроля знаний описаны в Приложении 1.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

№ п/п	Название раздела, темы	Формы учебного занятия	Формы, методы, приемы обучения. Педагогические технологии	Материально-техническое оснащение, дидактико- методический материал	Формы контроля/ аттестации
		Модуль 1	1 схнологии 1. Общие понятия в генетике ра	астений и агробиологии.	
1	Биотехнология как наука. Взаимосвязь генетики и биотехнологии с другими науками и отраслями промышленности.	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1. Биотехнология: Учеб. пособие для вузов. В 8кн. / Под ред. Н.С. Егорова, В.Д. Самуилова. – М.: Высш. шк., 1987. 2. Тутов, И.К. и др. Основы биотехнологии ветеринарных препаратов / И.К. Тутов, В.И. Ситьков // Учебное пособие для студентов высших учебных заведений по специальности 310800 – Ветеринария. – Ставрополь, 1997. – 253 с. 3. ЦОРы и презентации 4.https://library.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология	Беседа
2	Жизненный цикл высших растений. Основные этапы онтогенеза (эмбриональный, ювенильный, репродуктивный, зрелости, старения), их морфологические, физиологические и	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1. Калашникова, Е.А. Основы биотехнологии. Учебное пособие. / Е.А. Калашникова, М.Ю. Чередниченко.— М:МСХА, 2016. — 168 с. 2. Лутова Л.А., Матвеева Т.В. Генная и клеточная инженерия в биотехнологии высших растений. 2016, 168 с. 3.https://studfile.net/preview/9075688/ раде:2/ - статья о микробиологии	Беседа, Контрольный тест

	метаболические особенности				
3		Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1.Современные аспекты биотехнологии: учебно-методическое пособие / Е. А. Калашникова, Р. Н. Киракосян; М-во сельского хоз-ва Российской Федерации, Российский гос. аграрный ун-т МСХА им. К. А. Тимирязева Москва: Изд-во РГАУ-МСХА, 2016 124 с. 2. ЦОРы и презентации 3.https://library.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология	Контрольный тест
4	Определение понятий "рост" и "развитие" растений. Общие закономерности роста, типы роста у растений. Организация меристем корня и стебля. Рост и деятельность меристем	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1.Биотехнология: Учеб. пособие для вузов. В 8кн. / Под ред. Н.С. Егорова, В.Д. Самуилова. – М.: Высш. шк., 1987. Тутов, И.К. и др. Основы 2.ЦОРы и презентации 3.https://library.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология 4.https://djvu.online/file/9wwYXsl78PGus - закономерности роста растений	Беседа, Контрольный тест
5	Дифференцировка клеток и тканей:	Комбинированная	Информационно-рецептивный. Репродуктивный.	1. Анатомия растений Эзау. Меристемы, клетки и ткани растений : строение,	Беседа, Контрольный тест

	компетенция и детерминация. Дифференциальная экспрессия генома как фактор реализации генетических программ развития. Тотипотентность растительной клетки		Частично-поисковый. Практический	функции и развитие / Р. Ф. Эверт ; пер. с англ. под ред. канд. биол. наук А. В. Степановой. — М. : БИНОМ. Лаборатория знаний, 2015. — 600 с. 2.ЦОРы и презентации 3.https://library.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология	
6	Системы регуляции функций целого растения: трофическая, гормональная, электрическая. Фитогормоны (ауксины, гиббереллины, цитокинины, абсцизовая кислота, этилен, брассиностероиды), их строение, биосинтез, транспорт, физиологическое действие использование в современных технологиях.	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1.Биотехнология: Учеб. пособие для вузов. В 8кн. / Под ред. Н.С. Егорова, В.Д. Самуилова. – М.: Высш. шк., 1987. Тутов, И.К. и др. Основы 2.ЦОРы и презентации 3.https://library.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология	Контрольный тест
7	Влияние света на процессы роста и развития растений.	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый.	1. Шаповалова А. А. Экология растений : Учебметод. пособие. Саратов : Изд-во «Саратовский источник», 2015 80 с.	Беседа, выполнение лабораторной работы

	Фитохромная и		Практический	2.ЦОРы и презентации	
	криптохромная			3.https://djvu.online/file/9wwYXsl78PGus -	
	системы регуляции.			закономерности роста растений	
				4.http://lib.ugsha.ru:8080/bitstream/	
				123456789/11019/1/2016-15-270-274.pdf?	
				ysclid=lswyvruoji138507638 – научная	
				статья	
8	Устойчивость	Комбинированная	Информационно-рецептивный.	1. Устойчивость растений к	Беседа.
	растений к		Репродуктивный.	неблагоприятным факторам среды : учеб.	
	неблагоприятным		Частично-поисковый.	пособие / Ю. П. Федулов, В. В.	
	факторам.		Практический	Котляров, К. А. Доценко. – Краснодар:	
	Устойчивость как		-	КубГАУ, 2015. – 64 с.	
	приспособление			2.ЦОРы и презентации	
	растений к условиям			3.https://library.tou.edu.kz/fulltext/buuk/	
	существования.			b3180.pdf - биотехнология	
	Ответные реакции				
	растений на действие				
	неблагоприятных				
	факторов. Общие				
	принципы адаптивных				
	реакций растений на				
	экологический стресс				
	(изменение				
	экспрессии генов и				
	включение синтеза				
	стрессовых,				
	мембранных,				
	структурных белков;				
	перестройки				
	мембранных систем и				
	физиологических				
	процессов; синтез				

	протекторных соединений). Пути повышения устойчивости растений				
9	Сельское хозяйство в современном мире, тенденции развития.	Комбинированная	Информационно-рецептивный. Частично-поисковый. Практический	1. Биотехнология: Учеб. пособие для вузов. В 8кн. / Под ред. Н.С. Егорова, В.Д. Самуилова. – М.: Высш. шк., 1987. 2. Эволюция и филогения растений: учебное пособие / А. Л. Иванов. – МБерлин: Директ- Медиа, 2015. – 292 с. 3. ЦОРы и презентации	Беседа
10	Устройство молекулярно-генетической лаборатории . Основные методы филогенетического анализа растений.	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1.Калашникова Е.А. Клеточная инженерия растений./ Учебное пособие, РГАУ-МСХА, 2012, 318 с. 2.ЦОРы и презентации 3.https://library.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология	Беседа, выполнение лабораторной работы.
11	Генетика сельскохозяйственных растений (часть 1). Методы выделения и очистки растительной ДНК.	Комбинированная	Информационно-рецептивный. Частично-поисковый. Практический	1.Биотехнология: Учеб. пособие для вузов. В 8кн. / Под ред. Н.С. Егорова, В.Д. Самуилова. – М.: Высш. шк., 1987. Тутов, И.К. и др. Основы 2. Nei, М., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases /. М. Nei, W.H. Li // Proc Natl Acad Sci USA. – 1979. – Vol. 76. – Р. 5269–5273. З.ЦОРы и презентации 4.https://elibrary.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология 5. https://djvu.online/file/9wwYXsl78PGus	Беседа, Контрольный тест

				- закономерности роста растений	
	Модуль 2. Законо	мерности эволюции	и передачи генетического мате	ериала. Генетическая инженерия. Биоин	форматика.
1	Генетика сельскохозяйственных растений (часть 2). Амплификация и клонирование ДНК.	Комбинированная	Информационно-рецептивный. Частично-поисковый. Практический	1.Биотехнология: Учеб. пособие для вузов. В 8кн. / Под ред. Н.С. Егорова, В.Д. Самуилова. – М.: Высш. шк., 1987. Тутов, И.К. и др. Основы 2. Nei, М., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases /. М. Nei, W.H. Li // Proc Natl Acad Sci USA. – 1979. – Vol. 76. – P. 5269–5273. 3.ЦОРы и презентации 4.https://elibrary.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология 5. https://djvu.online/file/9wwYXsl78PGus - закономерности роста растений	Беседа, Контрольный тест
2	Фенотипическая и генотипическая изменчивость растений. Мутационная природа изменчивости. Частота мутаций и типы мутаций. Значение мутаций. Перспективы генной инженерии. Значение генетической инженерии.	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1.Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнологии на их основе: Учебное пособие. М.:ФБК-ПРЕСС, 1999, - 160 с. 2. Калашникова Е.А. Клеточная инженерия растений./ Учебное пособие, РГАУ-МСХА, 2012, 318 с. ЦОРы и презентации	Беседа, выполнение лабораторной работы.
3	Суть и значение генной и клеточной	Комбинированная	Информационно-рецептивный. Репродуктивный.	1.Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнологии на их	Беседа, выполнение лабораторной

	инженерии. Этапы получения гибридных клеток. Возможности метода слияния клеток. Гибридомная технология. Выведение новых и улучшение существующих сортов растений.		Частично-поисковый. Практический	основе: Учебное пособие. М.:ФБК-ПРЕСС, 1999, - 160 с. 2. Калашникова Е.А. Клеточная инженерия растений./ Учебное пособие, РГАУ-МСХА, 2012, 318 с. ЦОРы и презентации	работы.
4	Культура изолированных зародышей, органов, тканей, клеток, протопластов как модель для изучения процессов роста и развития. Использование метода культуры клеток для изучения биологии клетки	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1.Лутова Л.А., Матвеева Т.В. Генная и клеточная инженерия в биотехнологии высших растений. 2016, 168 с. 2.Лабораторный практикум по культуре тканей и клеток растений / М.:МСХА, 2017. 146 3. Анатомия растений Эзау. Меристемы, клетки и ткани растений : строение, функции и развитие / Р. Ф. Эверт ; пер. с англ. под ред. канд. биол. наук А. В. Степановой. — М. : БИНОМ. Лаборатория знаний, 2015. — 600 с. 4.ЦОРы и презентации	Беседа, Контрольный тест
5	Генетические ресурсы РФ.	Комбинированная	Информационно-рецептивный. Частично-поисковый. Практический	1. Основы биохимии Ленинджера: в 3 т. Т. 2: Биоэнергетика и метаболизм / Д. Нельсон, М. Кокс; пер. с англ. — 4-е изд. — М.: Лаборатория знаний, 2020. — 636 с. 2. Идентификация и паспортизация сортов сельскохозяйственных культур (мягкой пшеницы, картофеля, томата, льна и свеклы) на основе ДНК-	Контрольный тест, выполнение лабораторной работы, защита проектов.

				маркеров / С.В. Малышев [и др.] // Методические рекомендации. Минск. – 2006. – 28 с. 3. Nei, M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases /. M. Nei, W.H. Li // Proc Natl Acad Sci USA. – 1979. – Vol. 76. – P. 5269–5273. 4.ЦОРы и презентации	
6	Выведение новых и улучшение существующих сортов растений.	Комбинированная	Информационно-рецептивный. Частично-поисковый. Практический	1. Идентификация и паспортизация сортов сельскохозяйственных культур (мягкой пшеницы, картофеля, томата, льна и свеклы) на основе ДНК-маркеров / С.В. Малышев [и др.] // Методические рекомендации. Минск. – 2006. – 28 с. 2. ЦОРы и презентации https://elibrary.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология	Беседа, Контрольный тест
7	Взаимосвязь генетических процессов и их влияние на эволюцию растений.	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1. Литусов Н.В., Устюжанин А.В. Структура и репродукция вирусов. Иллюстрированное учебное пособие. — Екатеринбург: Изд-во УГМА, 2012 29 с. 2.ЦОРы и презентации https://library.tou.edu.kz/fulltext/buuk/b3180.pdf - биотехнология	Беседа, Контрольный тест
8	Молекулярное клонирование и методы генной инженерии для повышения	Комбинированная	Информационно-рецептивный. Частично-поисковый. Практический	1.Идентификация и паспортизация сортов сельскохозяйственных культур (мягкой пшеницы, картофеля, томата, льна и свеклы) на основе ДНК-маркеров / С.В. Малышев [и др.] //	Контрольный тест

	урожайности и сопротивляемости сельхозкультур к			Методические рекомендации. Минск. – 2006. – 28 с. 2. Molecular typing of Pyrus based on	
	болезням.			RAPD markers / C. Oliveira [et al.] // Sci. Hort. – 1999. –Vol. 79. – Р. 163–174. З.ЦОРы и презентации	
9	Секвенирование ДНК. История, эволюция методов.	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	1. Основы биохимии Ленинджера: в 3 т. Т. 2: Биоэнергетика и метаболизм / Д. Нельсон, М. Кокс; пер. с англ. — 4-е изд. — М.: Лаборатория знаний, 2020. — 636 с. 2.ЦОРы и презентации 3.https://studfile.net/preview/1700759/ page:24/ - статья	Контрольный тест, выполнение лабораторной работы
10	Биоинформатика в агрогенетике. Паспортизация сельскохозяйственных растений.	Комбинированная	Информационно-рецептивный. Частично-поисковый. Практический	1. Основы биохимии Ленинджера: в 3 т. Т. 2: Биоэнергетика и метаболизм / Д. Нельсон, М. Кокс; пер. с англ. — 4-е изд. — М.: Лаборатория знаний, 2020. — 636 с. 2. Идентификация и паспортизация сортов сельскохозяйственных культур (мягкой пшеницы, картофеля, томата, льна и свеклы) на основе ДНК-маркеров / С.В. Малышев [и др.] // Методические рекомендации. Минск. – 2006. – 28 с. 3. Nei, M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases /. M. Nei, W.H. Li // Proc Natl Acad Sci USA. – 1979. – Vol. 76. – P. 5269–5273. 4.ЦОРы и презентации	Контрольный тест, выполнение лабораторной работы, защита проектов.

11	Биоинформатика в агрогенетике. Анализ результатов секвенирования, подбор праймеров и работа с сайтом NCBI.	Комбинированная	Информационно-рецептивный. Частично-поисковый. Практический	1. Основы биохимии Ленинджера: в 3 т. Т. 2: Биоэнергетика и метаболизм / Д. Нельсон, М. Кокс; пер. с англ. — 4-е изд. — М.: Лаборатория знаний, 2020. — 636 с. 2. Идентификация и паспортизация сортов сельскохозяйственных культур (мягкой пшеницы, картофеля, томата, льна и свеклы) на основе ДНК-маркеров / С.В. Малышев [и др.] // Методические рекомендации. Минск. – 2006. – 28 с. 3. Nei, M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases /. M. Nei, W.H. Li // Proc Natl Acad Sci USA. – 1979. – Vol. 76. – P. 5269–5273.	Контрольный тест, выполнение лабораторной работы, защита проектов.
	службе народного хозяйства, здравоохранения и науки.	Комбинированная	Информационно-рецептивный. Репродуктивный. Частично-поисковый. Практический	4.ЦОРы и презентации 1. Микробиология с основами биотехнологии: учеб. пособие / А.И. Машанов, Н.А. Величко, Ж.А. Плынская; Краснояр. гос. аграр. ун-т. – Красноярск, 2015. – 168 с. 2. Сельскохозяйственная биотехнология: учебное пособие для среднего профессионального образования / О. Н. Чечина. — 3-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2021. — 266 с. 3.ЦОРы и презентации	Выполнение лабораторной работы Контрольный тест
13	Пути повышения эффективности	Комбинированная	Информационно-рецептивный. Репродуктивный.	1.ЦОРы и презентации 2.https://library.tou.edu.kz/fulltext/buuk/	Беседа, Контрольный тест

	фотосинтетических		Частично-поисковый.	b3180.pdf - биотехнология	
	систем. Биотопливные		Практический	3.https://studfile.net/preview/7447069/	
	элементы.			page:6/	
				4.https://habr.com/ru/articles/439204/	
				https://pubmed.ncbi.nlm.nih.gov/30824023/	
				- научная статья «Текущие и возможные	
				подходы к повышению эффективности	
				фотосинтеза».	
14	Генетика и экология	Комбинированная	Информационно-рецептивный.	1. Морфология,физиология, генетика и	Беседа,
	микроорганизмов.		Репродуктивный.	экология микроорганизмов. Малый	Контрольный тест
	Определение		Частично-поисковый.	практикум для самостоятельной работы	
	понятий		Практический	студентов: Методическое ру-	
	наследственности и			кодство.Сост. Т.Г.Чабашвили;	
	изменчивости			В.Н.Марков.Ижевск, 2005 с.	
	микроорганизмов.			2.ЦОРы и презентации	
				3.http://vmede.org/index.php?	
				topic=564.0&ysclid=lswykbp6sm99420104	
				9 – генетика микроорганизмов	
15	Технологии введения	Комбинированная	Информационно-рецептивный.	1.Учебно-методическое пособие / О.А.	Практическая работа
	в культуру In vitro		Репродуктивный.	Тимофеева, Ю.Ю. Невмержицкая. –	в лаборатории.
	различных первичных		Частично-поисковый.	Казань: Казанский университет, 2012. –	
	эксплантов растений		Практический	56 c.	
				2.ЦОРы и презентации	
				3.https://library.tou.edu.kz/fulltext/buuk/	
				b3180.pdf – биотехнология	
				4.https://bbs.sgu.ru/sites/bbs.sgu.ru/files/	
				2016/12/99-105.pdf - научная статья	

КАДРОВОЕ ОБЕСПЕЧЕНИЕ

Обеспечение реализации программы, нацеленной на предоставление высокого качества обучения, планируется за счет штата, состоящего из высококвалифицированных специалистов, обладающих определенными компетенциями и выполняющими определенный функционал, а также преподавание данной программы могут осуществлять другие сотрудники, имеющие высшее медицинское образование, члены экспертного совета регионального центра «Сириус 26» при наличии необходимых компетенций и уровня профильной подготовки.

ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО КУРСУ

Реализация учебной дисциплины требует наличия учебной лаборатории «генетики» и «микроклонального размножения растений».

Оборудование учебной лаборатории:

- посадочные места по количеству обучающихся;
- рабочее место преподавателя;
- комплект учебно-наглядных пособий.

Перечень технических средств:

- интерактивная доска;
- проектор;
- компьютер (ноутбук) с лицензированным программным обеспечением.

Перечень оборудования и оснащения для реализации курса «Генетика растений и агробиология» помещение должны быть:

- стерильная зона в лаборатории генетики растений;
- комната для обработки и хранения информации исследования;

- наборы для выделения растительной ДНК;
- питательные среды для микроклонированя;
- микропрепараты;
- автоклав;
- центрифуги, вортексы;
- дозаторы;
- ПЦР анализатор;
- оборудование для электрофореза ДНК;
- пинцеты;
- спиртовки;
- стекла предметные;
- микроскопы световые;
- чашки Петри;
- перчатки медицинские;
- плитка нагревательная лабораторная;
- весы аналитические лабораторные;
- пластиковые емкости для питательных сред;
- пробирки лабораторные;
- рН метр.

УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

1.1. Перечень литературы, использованной при написании программы:

- 1. Идентификация и паспортизация сортов сельскохозяйственных культур (мягкой пшеницы, картофеля, томата, льна и свеклы) на основе ДНК-маркеров / С.В. Малышев [и др.] // Методические рекомендации. Минск. 2006. 28 с.
- 2. Основы биохимии Ленинджера : в 3 т. Т. 2 : Биоэнергетика и метаболизм / Д. Нельсон, М. Кокс ; пер. с англ. 4-е изд. М. : Лаборатория знаний, 2020. 636 с.
- 3. Высоцкий В.А. Биотехнологические приёмы в современном садоводстве // Плодоводство и ягодоводство России:4. Сб. науч. работ. М., 2011. С. 3-10.
- 4. Буйлова Л.Н. Концепция развития дополнительного образования детей: от замысла до реализации. Методическое пособие / Л.Н. Буйлова, Н.В.Кленова. М.: Педагогическое общество России, 2016. 192 с.
- 5. Буйлова Л.Н. Технология разработки и экспертизы дополнительных образовательных программ и рабочих программ курсов внеурочной деятельности: методическое пособие- М.:
- 6.ГАОУ ВО МИОО, 2015.- 155с. [Электронный ресурс] // https://www.slideshare.net/rnmc7/ss 79081944.
- 7. Методические комментарии к написанию образовательных программ дополнительного образования детей. Государственное Центр общеобразовательное учреждение образования «Санкт Петербургский городской Дворец творчества юных». Городской центр образования: Санкт-Петербург. 2011. развития дополнительного

[Электронный pecypc] // http://baseold.anichkov.ru/files/gzrdo/public/pedagog_orient/%2316-2013/04/4-01_.pdf.

- 8. разработке Методические рекомендации (составлению) ПО дополнительной общеобразовательной общеразвивающей программы преподаватели кафедры /авторы-составители: теории практики воспитания. ГБОУ ДПО «Нижегородский институт развития образования» [Электронный ресурс] U http://www.niro.nnov.ru/?id=32429.
- 9. Энерджиквантум тулкит. Ларькин Андрей Владимирович: Базовая серия «Методический инструментарий тьютора». М.: Фонд новых форм развития образования. 2017.- 120 с.
- 10. Nei, M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases /. M. Nei, W.H. Li // Proc Natl Acad Sci USA. 1979. Vol. 76. P. 5269–5273.
- 11. Molecular typing of Pyrus based on RAPD markers / C. Oliveira [et al.] // Sci. Hort. 1999. –Vol. 79. P. 163–174.

1.2. Перечень литературы, рекомендованной обучающимся:

- 1. Биотехнология: Учеб. пособие. В 8кн. / Под ред. Н.С. Егорова, В.Д. Самуилова. М.: Высш. шк., 1987.
- 2. Бекер, М.Е. и др. Биотехнология / М.Е. Бекер, Г.К. Лиепииньш, Е.П. Ройпулис. М.: Агропромиздат, 1990. 333 с.
- 3. Зигуненко, С.Н. Сумма биотехнологий / С.Н. Зигуненко / Ред. Г.Н. Кондрашев. М.: Знание, 1988. 47 с. 1. Биотехнология. В 2 ч. Учебник и практикум для академического бакалавриата / под общ. ред. Н.В. Загоскиной, Л.В. Назаренко. 2-е изд. испр. и доп. М.:Изд-во Юрайт, 2017.
- 4. Биотехнология растений: учебник и практикум для бакалавриата и магистратуры /Л.В. Назаренко, Ю.И. Долгих, Н.В. Загоскина, Г.Н. Ралдугина. –

- 2-е изд., испр. И доп. –М.:Издательство Юрайт, 2019. -161 с
- 5. Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнологии на их основе: Учебное пособие. М.:ФБК-ПРЕСС, 1999, 160 с.
- 6. Калашникова Е.А. Клеточная инженерия растений./ Учебное пособие, РГАУ-МСХА, 2012, 318 с.
- 7. Калашникова, Е.А. Основы биотехнологии. Учебное пособие. / Е.А. Калашникова, М.Ю. Чередниченко.— M:MCXA, 2016. 168 с.
- 8. Лутова Л.А., Матвеева Т.В. Генная и клеточная инженерия в биотехнологии высших растений. 2016, 168 с.
- 9. Сельскохозяйственная биотехнология и биоинженерия. Учебник / под ред. В.С. Шевелухи. Изд.4, знач. перераб. и доп.-М.:Изд-во URSS. 2015. 704 с.
- 10.Сельскохозяйственная биотехнология : учеб. пособие для СПО / О. Н. Чечина. 2-е изд., пер. и доп. М. : Издательство Юрайт, 2019. 231 с
- 11. Современные аспекты биотехнологии: учебно-методическое пособие / Е. А. Калашникова, Р. Н. Киракосян; М-во сельского хоз-ва Российской Федерации, Российский гос. аграрный ун-т МСХА им. К. А. Тимирязева. Москва: Изд-во РГАУ-МСХА, 2016. 124 с.
- 12. Лабораторный практикум по сельскохозяйственной биотехнологии. /Изд. 2-е. М.:Изд-во МСХА, 2014. 116 с.
- 13. Лабораторный практикум по культуре тканей и клеток растений / M.:MCXA, 2017. 146 с.
- 14. Снисаренко Т.А., Медведева И.В., Дубровин А.П. Микробиология. Учебнометодический комплекс по специальности «Биоэкология». Учебнометодическое пособие. М.:ООО «Бизнес-Вита», 2008.-60с
- 15. Снисаренко Т.А.. Пасечник В.В.. Швецов Г.Г., Асеев В.В., Дмитриева Т.А., и др Всероссийская олимпиада школьников по биологии/- М.: Из-во «Академия»,2005г., стр.199.
- 16. https://biomolecula.ru/specials/AI

1.3. Перечень литературы, рекомендованной родителям:

- 1. Вакула, В. Биотехнология: что это такое? / В. Вакула. М.: Мол. Гвардия, 1989. 301 с.
- 2. Печуркин, Н.С. и др. Популяционные аспекты биотехнологии / Н.С. Печуркин, А.В. Брильков, Т.В. Марченкова. Наука. Новосибирск, 1990. 169 с.

1.4 Перечень раздаточного материала:

1. Тематические презентации, учебные фильмы.

2. Информационное обеспечение

Программное обеспечение: Power Paint, MEGA X, NCBI blast.

2.1 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения программы:

- 1.https://www.ncbi.nlm.nih.gov/ Национальный центр биотехнологической информации
- 2. https://biomolecula.ru/ Научно-популярный сайт, посвящённый молекулярным основам современной биологии и практическим применениям научных достижений в медицине и биотехнологии.
- 3. http://www.lib.msu.su/ научная библиотека МГУ
- 4.http://www.vavilon.ru/ Государственная публичная научно–техническая библиотека России
- 5. http://www.edic.ru Электронные словари
- 6. https://elibrary.ru/ научная электронная библиотека
- 7. http://www.bestlibrary.ru On–line библиотека

Приложение 1 к общеобразовательной общеразвивающей программе «Генетика растений и агробиология»

Входной контроль

Входной контроль проводится с каждым обучающимся индивидуально с целью проверки базовых знаний по биологии. Форма проведения - тестирование разного уровня сложности отдельно для обучающихся 8, 9, 10 классов.

Тесты уровня А (форма: задания закрытого типа) содержат задания в количестве 15 штук.

Тесты уровня В (форма: задание на восстановление последовательности) содержат задания в количестве 10 штук.

Тесты уровня C (форма: задания открытого типа) содержат задания в количестве 5 штук.

Во время проведения входной диагностики педагог заполняет информационную карточки «Результаты входной диагностики», пользуясь шкалой «Оценка параметров входного контроля».

Оценка	параметров	входного	контроля
--------	------------	----------	----------

Наименование уровня	Результат диагностики, %
Элементарный уровень	0 – 54%
Низкий уровень	55 – 69%
Средний уровень	70 – 84%
Высокий уровень	85 – 100%

Примерные задания:

Уровень А (форма: задания закрытого типа):

- 1. Метод генетики, с помощью которого можно определить хромосомные и геномные мутации:
- 1)цитогенетический
- 2)близнецовый
- 3)генеалогический
- 4)биохимический

- 2. Основное отличие прокариот от эукариот...
- а) отсутствие ядра;
- б) клеточное строение;
- в) наличие рибосом;
- г) отсутствие ДНК.

Уровень В (форма: задание на восстановление последовательности): Расположите в правильном порядке процессы, протекающие в процессе жизнедеятельности клетки. В ответе запишите соответствующую последовательность букв.

- 1. Выработка энергии путем клеточного дыхания (окисление глюкозы и других питательных веществ).
- 2. Биохимическое преобразование питательных веществ в клеточные компоненты (синтез белков, липидов, углеводов и т.д.).
- 3. Распределение полученных веществ и энергии по всей клетке
- 4. Удаление отходов, продуктов обмена веществ
- 5. Деление клетки и синтез ДНК для обеспечения передачи генетической информации
- 6. Фагоцитоз и пиноцитоз поглощение клеткой питательных веществ и кислорода
- 7. Получение питательных веществ и кислорода извне

\bigcap		
OTREI.	ļ	

Уровень С (форма: задания открытого типа):

- 1. Какое воздействие оказывают генетические модификации на растение? Укажите не менее двух отрицательных воздействий.
- 2. Рассмотрите рисунки с изображением растительной и животной клетки. Какие основные отличия между клетками? Назовите основные отличия хранения генетического материала в растительных и животных клетках?

Текущий контроль

Осуществляется после каждой темы в форме наблюдения, тестирования, контрольного опроса (устного или письменного), собеседования, психологического мониторинга.

Примерные задания:

Тема «Генетика растений».

Нуклеотиды в цепочке нуклеиновой кислоты соединяются связями:

Варианты ответа:

- а) фосфодиэфирными;
- б) водородными;
- в) пептидными;
- г) дисульфидными;
- д) нет правильного ответа.

Тема «Биотехнологии»

Методы в биотехнологии используются для изучения живых организмов, их частей и продуктов их жизнедеятельности. Некоторые из них перечислены ниже, опишите для чего эти методы используют:

•	Микроскопические исследования:
•	Культура клеток и тканей:
•	Генетическая инженерия:
	Молекулярная биология:
•	Клеточная биология:

Промежуточная аттестация

Проводится в конце первого модуля в форме теста с самопроверкой. Количество тестов для каждого модуля включает 20 заданий.

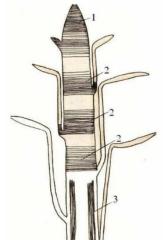
Примерные задания:

Модуль 1 «Общие понятия генетики и биотехнологии».

1. ДНК содержится в:

Варианты ответа:

- а) рибосомах и ядре;
- б) ядре, гиалоплазме и митохондриях;
- в) гиалоплазме и хлоропластах;
- г) ядре, митохондриях и хлоропластах;
- д) гиалоплазме и ядре.
- 2. Генетический материал в клетках эукариот представлен:


Варианты ответа:

- а) нуклеиновыми кислотами;
- б) хромосомами;
- в) полипептидами;
- г) кольцевой молекулой ДНК;
- д) нуклеоидом.

Модуль 2 "Агрогенетика, микроклонирование растений и генетическая инженерия».

- 1. Гибридизация протопластов возможна, если клетки исходных растений обладают:
 - а) половой совместимостью;
 - б) половой несовместимостью;
 - в) совместимость не имеет существенного значения.

Меристемы

2. Назовите типы меристем по положению:

1-____

2-

3-

3. Фитогормоны можно разделить на несколько групп:

Опишите их	функции!
------------	----------

•	Ауксины	_•
•	Гиббереллины	٠.
•	Цитокинины	
•	Абсцизовая кислота	
	Этилен -	

Итоговая аттестация

Завершает второй модуль, проводится в виде собеседования и выполнения проектов в лаборатории «Клонального микроразмножения растений» и лаборатории «Генетики».

Перечень практических манипуляций:

- 1. Уверенное использование светового микроскопа.
- 2. Методика приготовления микропрепаратов.
- 3. Умение окрашивать живые растительные клетки различными красителями.
- 4. Запуск лабораторного оборудования (автоклав, весы лабораторные, плитка лабораторная, ламинарные боксы, весы аналитические, дозаторы, вортексы, ПЦР анализатор, ДНК наноспекторофотометр).
 - 5. Методика стерильной работы в лаборатории.
 - 6. Приготовление различных питательных сред для растений.
- 7. Уверенное использование баз данных научных публикаций и поиск объектов изучения в генетическом банке (elibrary.ru., https://www.ncbi.nlm.nih.gov/).