

РЕГИОНАЛЬНЫЙ ЦЕНТР ВЫЯВЛЕНИЯ, ПОДДЕРЖКИ И РАЗВИТИЯ СПОСОБНОСТЕЙ И ТАЛАНТОВ ДЕТЕЙ И МОЛОЕЖИ СТАВРОПОЛЬСКОГО КРАЯ «СИРИУС 26»

СОГЛАСОВАНО

Экспертным советом регионального центра выявления, поддержки и развития способностей и талантов детей и молодежи Ставропольского края «Сириус 26», протокол № 1/2025 от 03.02.2025 г .

УТВЕРЖДЕНО

Директором Центра «Поиск»

Томилиной О.А.

приказ № 13/1 от 04.02.2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«БОЛЬШИЕ ВЫЗОВЫ. СОВРЕМЕННАЯ ЭНЕРГЕТИКА»

Направленность: техническая

Возраст обучающихся: 14-17 лет (9-11 классы)

Объем программы: 92 часа

Срок освоения: 2 месяца

Форма обучения: очная с применением дистанционных

образовательных технологий

Авторы программы: Бондаренко Кристина Ришатовна, методист по

направлению «Современная энергетика»

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ	2
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
УЧЕБНЫЙ ПЛАН	13
КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК	14
РАБОЧАЯ ПРОГРАММА УЧЕБНО-ОТБОРОЧНОГО КУРСА «СТАРТ В	
СОВРЕМЕННУЮ ЭНЕРГЕТИКУ»	15
РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «БОЛЬШИЕ ВЫЗОВЫ.	
СОВРЕМЕННАЯ ЭНЕРГЕТИКА»	16
РАБОЧАЯ ПРОГРАММА УЧЕБНО-ТРЕНИНГОВОГО КУРСА «ЭНЕРГЕТ)	ИКА
БУДУЩЕГО»	23
ОЦЕНОЧНЫЕ МАТЕРИАЛЫ	24
КАДРОВОЕ ОБЕСПЕЧЕНИЕ	27
ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ	ДЛЯ
ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО КУРСУ	27
УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	
ПРОГРАММЫ	28

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Энергия - это необходимый фактор ДЛЯ существования цивилизации. Растущее население планеты, увеличение стандартов потребления энергии, появление новых высокотехнологичных производств и развитие цифровых технологий требует все больше и больше источников энергии. Развивающиеся страны используют энергоисточники с высоким уровнем эффективности, чтобы обеспечить быстрое развитие и достичь высокого уровня жизни. Использование органического топлива, которое является основным 90% потребления биосферы, составляет более загрязнителем всего энергоресурсов в мире и не снижается в ближайшие десятилетия. Важно разрабатывать технологии, которые бы снижали антропогенную нагрузку на биосферу, повышая при этом эффективность использования энергии. В рамках вызова «Современная энергетика» в конкурсе «Большие вызовы» обучающимся предстоит исследовать работу различных источников энергии для эффективного и природосберегающего использования.

Всероссийский конкурс научно-технологических проектов «Большие вызовы» — это масштабное мероприятие для школьников, которые занимаются научной или исследовательской деятельностью. Конкурс проводится в целях выявления и развития у обучающихся творческих способностей и интереса к проектной, научной, инженерно-технической, изобретательской, творческой деятельности.

1. Основные характеристики программы

Данная образовательная программа предназначена для обучающихся, стремящихся к успешному участию во Всероссийском конкурсе научнотехнологических проектов «Большие вызовы» по направлению «Современная энергетика». Для достижения высоких результатов в конкурсе, актуальным становится использование в обучении приемов и методов, которые формируют умение учащихся самостоятельно добывать новые знания, собирать необходимую информацию, умение выдвигать гипотезы, делать выводы и

умозаключения. Решить эту проблему возможно через организацию проектной деятельности. Изучение курса предполагается построить в форме занятий-практикумов, лекций, индивидуальных консультаций, деловых игр. Содержание курса включает в себя и самостоятельную и коллективную работу учащихся.

1.1. Направленность программы

Дополнительная общеобразовательная общеразвивающая программа «Большие Современная энергетика» техническую вызовы. имеет Также содержание направленность. eë рассматривается средство как формирования навыков эффективной деятельности в проекте.

1.2. Адресат программы

Программа адресована обучающимся от 14 до 17 лет.

Программа предназначена для одаренных школьников 9-11 классов, проявляющих повышенный интерес к проектному творчеству, современной энергетике и физике.

Возрастная категория обучающихся – разновозрастная.

Необходимы базовые знания по следующим школьным предметам: физика, география, химия, биология и экология.

Наличие определенной физической и практической подготовки для изучения учебной программы не требуется.

1.3. Актуальность программы

Актуальность настоящей программы обусловлена ее методологической значимостью. Знания и умения, необходимые для организации проектной и исследовательской деятельности и ее технологического воплощения в конечный продукт, помогут успешно участвовать во Всероссийском конкурсе научнотехнологических проектов «Большие вызовы». Программа позволяет реализовать актуальные в настоящее время компетентностный, личностноориентированный, деятельностный подходы к образованию.

1.4. Отличительные особенности/новизна программы

Отличительной особенностью программы является, что подготовка ко Всероссийскому конкурсу научно-технологических проектов проходит не только

со стороны получения предметных компетенций и проработки технической составляющей проекта, но и со стороны проработки всех этапов жизненного цикла проекта, а именно: от выявления и формулирования проблематики проекта, грамотного целеполагания с использованием таких принципов, как SMART и OKR, и генерацией идей, направленных на решение проблемы и достижения цели, до публичной защиты проектов и составлением паспорта проекта для формирования заявки на участие во Всероссийском конкурсе научно-технологических проектов «Большие вызовы».

Работа над проектом строится в логике деятельности, имеющей личностный смысл для ребенка, что повышает его мотивацию в учении. Педагогические условия, создаваемые для эффективного формирования личности, способной работать в команде, будут реализовываться через вовлечение детей в проектную деятельность, обеспечивающую накопление личностного опыта, интерактивного взаимодействия в команде.

Новизна программы состоит в том, что в ней уделяется большое внимание практической работе обучающимся в конкретной деятельности, что позволяет им соотнести свои индивидуальные особенности и возможности с требованиями, которые предъявляются к данному направлению в конкурсе «Большие вызовы». Программа разработана таким образом, что в тесной взаимосвязи со знаниями и умениями, полученными обучающимися на занятиях по практической работе с Arduino и учебным комплексом альтернативного энергообеспечения помещения и другими, будет сочетание с получением навыков эффективной деятельности в проекте.

Уровень освоения программы – углубленное изучение технологий, необходимых для реализации проектов в области современной энергетики.

1.5 Объем и срок освоения программы

Объем программы – 92 часа.

Срок реализации программы – 2 месяца.

1.6 Цели и задачи программы

Целью программы является создание условий ДЛЯ приобретения обучающимися знаний, необходимых проектно-исследовательской ДЛЯ деятельности в рамках подготовки к участию во Всероссийском конкурсе научно-технологических проектов «Большие вызовы» ПО направлению «Современная энергетика».

Задачи программы

1. Обучающие:

- дать системные базовые знаний об электрическом и магнитных полях,
 постоянном и переменном токе, основных законах и элементах электрических
 цепей, основах электроники и схемотехники;
- научить корректному проведению экспериментов и работе с учебным комплексом альтернативного обеспечения помещения, учебно-методическим стендом «Ванадиевая редокс-батарея», учебно-методическим стендом «Твердооксидные микротрубчатые топливные элементы», учебно-методическим стендом «Накопители электроэнергии»;
- изучить особенности работы и основные характеристики электрических машин постоянного и переменного тока, солнечных панелей, ветрогенератора;
 - ввести понятия проект, проектирование, проектная деятельность;
 - ознакомить с шагами жизненного цикла проекта;
- научить формулировать проблему, определять цель проекта, строить план реализации проекта, определять риски;
- обучить проведению исследований, презентаций и межпредметной позиционной коммуникации.

2. Развивающие:

создать условия для стимулирования познавательной активности обучающихся посредством включения их в различные виды проектной и конструкторской деятельности;

- способствовать развитию навыков применения полученных знаний на практике и при реализации своих проектных работ;
- сформировать у обучающихся технически-ориентированное мышление и творческий подход к работе;
- развить изобретательское, креативное, критическое и продуктовое мышления;
- способствовать формированию навыков самостоятельной работы с информацией (поиск, анализ, систематизация, публичное представление) и специальной литературой, развитию и совершенствованию навыков аналитического и критического мышления, многозадачности, проектного управления и работы в команде, рефлексии;
- сформировать гибкие (soft) компетенции (4К: критического мышления,
 креативного мышления, коммуникации, кооперации);
- способствовать развитию познавательных интересов, развитию индивидуальности и самореализации.

3. Воспитательные:

- побудить обучающихся к активной самостоятельной познавательной,
 мыслительной и конструкторской деятельности;
- воспитать мотивацию учащихся к изобретательству, созданию собственных проектных решений в рамках разработки проектов;
- сформировать проектное мировоззрение, технологическую культуру и творческое мышление;
- сформировать потребность в самостоятельном приобретении и применении знаний, потребность к постоянному саморазвитию;
- воспитать трудолюбие, развить практические умения и навыки,
 расширить политехнический кругозор и умение планировать работу по
 реализации замысла, предвидение результата и его достижение;
 - повысить уровень самоанализа и критического мышления;
- улучшить качества мышления, необходимые для адаптации в современном информационном обществе;

сформировать способности к продуктивному общению и сотрудничеству со сверстниками и взрослыми в процессе творческой деятельности.

1.7. Планируемые результаты освоения программы

- 1. Предметные результаты:
- работает с учебным комплексом альтернативного энергообеспечения помещения, учебно-методическим стендом «Ванадиевая редокс-батарея», учебно-методическим стендом «Твердооксидные микротрубчатые топливные элементы», учебно-методическим стендом «Накопители электроэнергии»;
- владеет теоретическими знаниями (по основным разделам учебного плана программы), системой понятий;
 - владеет специальной терминологией;
- использует нормы и правила рационального использования природных ресурсов;
- оценивает эффективность природоохраняемых мероприятий по использовании новых методов и технологий;
- знает основные регламентирующие документы конкурса и структуру конкурса «Большие вызовы»;
- понимает основы методологии проектной деятельности, структуру и правила оформления проектной работы и паспорта проекта.
 - 2. Метапредметные результаты:
- владеет программными принципами работы компьютерных технологий при создании проектной работы;
- составляет индивидуальный план реализации проекта (выявляет и формулирует проблему; обосновывает цель проекта; планирует этапы выполнения работ; контролирует ход и результаты выполнения проекта, доказывает его актуальность);
- планирует, контролирует и оценивает учебные действия в соответствии
 с поставленной задачей и условиями ее реализации; определяет наиболее
 эффективные способы достижения результата;

- применяет и проводит рефлексию и саморефлексию;
- анализирует и синтезирует новые знания, устанавливает причинноследственные связи, доказывает свои суждения, строит алгоритмические конструкции;
- умеет использовать нормативно-правовые документы в своей деятельности;
- знает назначение и функции, используемых информационных и коммуникационных технологий;
- обладает навыками работы с информационными ресурсами и специальной литературой: сбор информации, обработка, анализ, систематизация, оформление, передача, интерпретация, презентация результатов своей деятельности, применение полученных знаний на практике;
- обладает навыками применения современных методик и технологий организации проектной деятельности;
- определяет общие цели и пути её достижения; умеет договариваться о распределении функций и ролей в совместной деятельности; осуществляет взаимный контроль в совместной деятельности, адекватно оценивает собственное поведение и поведение окружающих.
 - 3. Личностные результаты:
- владеет культурой мышления, способностью к обобщению, анализу,
 восприятию информации, постановке цели и выбору путей ее достижения;
- умеет логически верно, аргументировано и ясно строить устную и письменную речь;
 - готов к работе в коллективе;
 - стремится к саморазвитию и адаптации к жизни;
- умеет критически оценивать свои достоинства и недостатки, намечать пути и выбирать средства развития достоинств и устранения недостатков;
- осознаёт социальную значимость своей будущей профессии, обладает высокой мотивацией к выполнению профессиональной деятельности;

- осознаёт сущность и значение информации в развитии современного общества;
 - -способен работать с информацией в глобальных компьютерных сетях;
 - владеет навыками безопасного поведения в информационной среде.

2. Организационно-педагогические условия реализации программы

2.1 Язык реализации программы

Реализация дополнительной общеобразовательной общеразвивающей программы «Большие вызовы. Современная энергетика» осуществляется на государственном языке Российской Федерации (на русском языке).

2.2. Форма обучения

Очная с применением дистанционных образовательных технологий

2.3. Особенности реализации программы

Программа реализуется по модульному принципу с использованием дистанционных образовательных технологий.

- 1 модуль дистанционный учебно-отборочный курс в течение 2-х недель;
- 2 модуль очная профильная смена в течение 2-х недель;
- 3 модуль дистанционный учебно-тренинговый курс в течение 3-х недель.

Программой предусмотрена система взаимосвязанных занятий, выстроенных в логической последовательности и направленных на активизацию познавательной сферы обучающихся.

При реализации программы используется технология крупноблочной подачи информации и погружения в предмет с последующей самостоятельной проработкой основных вопросов, обозначенных темой программы (учебнотренинговый курс).

Программой предусмотрено проведение лекций, практических занятий, экскурсий, защиты проектов.

Участие школьников в программе осуществляется на бюджетной основе.

2.4. Условия набора и формирования групп

Условия набора обучающихся.

На обучение зачисляются обучающиеся 9-11 классов общеобразовательных организаций Ставропольского края, имеющие постоянную прописку в Ставропольском крае.

Зачисление на обучение по программе осуществляется по результатам конкурсного отбора в соответствии с Правилами приема обучающихся в региональный центр выявления, поддержки и развития способностей и талантов детей и молодёжи Ставропольского края «Сириус 26».

Условия конкурсного отбора гарантируют соблюдение прав обучающихся в области дополнительного образования и обеспечивают зачисление наиболее способных и подготовленных обучающихся к освоению программы.

Количество обучающихся: 12 человек.

Условия формирования групп: разновозрастная.

2.5. Формы организации и проведения занятий

Формы организации занятий: аудиторные (под непосредственным руководством преподавателя) и внеаудиторные (с выездом на предприятия г. Ставрополя) занятия.

Формы проведения занятий: комбинированные, теоретические, практические, решение кейса, защита проекта.

Формы организации деятельности обучающихся:

- фронтальная: беседа-дискуссия на основе теоретического материала;
 - групповая: работа в малых группах;
- коллективная (ансамблевая): организация проблемно-поискового или творческого взаимодействия между всеми детьми одновременно;
 - индивидуальная: выполнение задания.

Режим занятий

Очная форма обучения: по 8 уроков в день в течение 10 учебных дней. Программа реализуется в г. Ставрополе.

Дистанционно по месту проживания обучающегося 1-2 раза в неделю по 1-2 учебных часа в удобное время.

2.6. Средства обучения

В программе используются следующие средства для реализации образовательного процесса:

- персональный компьютер с выходом в интернет;
- учебный комплекс альтернативного энергообеспечения помещения;
- учебно-методический стенд «Ванадиевая редокс-батарея»;
- учебно-методический стенд «Твердооксидные микротрубчатые топливные элементы»;
 - учебно-методический стенд «Накопители электроэнергии»;
- аппаратно-программное средство построения и прототипирования схем Arduino;
 - демонстрационные и раздаточные материалы;
 - обучающие и демонстрационные файлы.

учебный план

№	Наименование модуля	Контактная работа обучающихся с преподавателем, часов			Формы контроля / аттестации
		Теория	Практика	Всего	
1.	Учебно-отборочный курс «Старт в современную энергетику»	4	2	6	Тестирование с самопроверкой
2.	Учебный курс «Большие вызовы. Современная энергетика»	12	68	80	Публичная защита решения кейса или проекта
3.	Учебно-тренинговый курс «Энергетика будущего»	4	2	6	Публичная защита проекта
	Итого:	20	72	92	

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Наименование модуля,	Дата начала	Дата	Количество	Количество	Количество	Режим
учебного курса	обучения	окончания	учебных	учебных	учебных	занятий
		обучения	недель	дней	часов	
Учебно-отборочный курс	11.08.2025	27.08.2025	2		8	дистанционное
«Старт в современную						обучение
энергетику»						
Учебный курс «Большие	22.09.2025	04.10.2025	2	10	80	очное
вызовы. Современная						обучение,
энергетика»						5 раз в неделю
						по 8 часов
Учебно-тренинговый	04.10.2025	26.10.2025	3		6	дистанционное
курс «Энергетика						обучение
будущего»						

РАБОЧАЯ ПРОГРАММА УЧЕБНО-ОТБОРОЧНОГО КУРСА «СТАРТ В СОВРЕМЕННУЮ ЭНЕРГЕТИКУ»

Учебно-отборочный курс «Старт в современную энергетику» предназначен для обучающихся 9-11 классов, подавших заявку на участие в региональном треке Всероссийского конкурса научно-технологических проектов «Большие вызовы».

Курс знакомит обучающихся с основными понятиями электричества и термодинамики, направлен на решение типовых задач, а также знакомство с основными понятиями современной энергетики.

Курс позволяет обучающимся изучить основные понятия, на которых строятся базовые необходимые знания для работы в области энергетики.

Курс реализуется в дистанционном формате. По окончанию курса обучающийся загружает презентацию и паспорт своего проекта.

$N_{\underline{0}}$ Контактная работа Наименование раздела, темы тем обучающихся с преподавателем, часов Ы Теория Практика Всего 1. Электричество. Термодинамика 1 1 2 2. Решение задач по физике 1 1 2 3. 1 1 2 Основы современной энергетики: 4. Творческое задание 2 2 5 Итого: 3 8

Тематический план

СОДЕРЖАНИЕ УЧЕБНО-ОТБОРОЧНОГО КУРСА «СТАРТ В СОВРЕМЕННУЮ ЭНЕРГЕТИКУ»

Тема 1. Электричество. Термодинамика

Теория: понятие электрического тока, постоянный и переменный ток, сила тока, закон Ома, работа и мощность тока, закон Джоуля-Ленца, КПД, полезная работа, электромагнитная индукция, мощность.

Тема 2. Решение задач по физике.

Теория: теплота сгорания топлива, удельная теплоемкость, напряжение, последовательное и параллельное соединения,

Тема 3. Основы современной энергетики.

Теория: источники энергии, электростанции, водородная энергетика.

Тема 4. Творческое задание.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «БОЛЬШИЕ ВЫЗОВЫ. СОВРЕМЕННАЯ ЭНЕРГЕТИКА»

Курс «Большие вызовы. Современная энергетика» предназначен для обучающихся 9-11 классов.

Курс «Большие вызовы. Современная энергетика» предназначен для получения необходимых предметных навыков для проработки технической составляющей проектов в области энергетики, а также навыков, необходимых для эффективной деятельности в проекте.

В результате освоения учебного курса обучающийся должен: знать:

- основные виды энергий и различия между ними;
- основные понятия и терминологию в электронике и энергетике;
- возможности преобразования одной энергии в другую;
- принципы работы ТЭС, ГЭС, АЭС;
- понятия производство, транспортировка и потребление
 электроэнергии;
- виды, устройство и принцип работы трансформаторов; способы использования энергий в обычной жизни;
- основные понятия схемотехники, методы реализации и расчета
 электронных устройств;
 - основные функции и принцип работы электронных компонентов;
- особенности работы с интегрированной средой разработки для программирования микроконтроллеров Arduino;
 - основные регламентирующие документы конкурса;
 - основы методологии проектной деятельности;
- структуру конкурса «Большие вызовы» и правила оформления проектной работы и паспорта проекта.

уметь:

- создавать модели объектов и процессов в виде изображений и чертежей;
- читать простые принципиальные электрические схемы, разрабатывать и корректно записывать собственные схемы;
- проводить компьютерные эксперименты с использованием готовых моделей объектов и процессов;
- подключать и программировать работу аналоговых и цифровых датчиков с различными микроконтроллерами;
 - программировать в среде Arduino IDE;
- работать с работает с учебным комплексом альтернативного энергообеспечения помещения,
- использовать учебно-методический стенд «Ванадиевая редоксбатарея», учебно-методический стенд «Твердооксидные микротрубчатые топливные элементы», учебно-методический стенд «Накопители электроэнергии»;
- планировать и выполнять учебные проекты: выявлять и формулировать проблему; обосновывать цель проекта; планировать этапы выполнения работ; контролировать ход и результаты выполнения проекта, доказывать ее актуальность;
 - составлять паспорт проекта.

Тематический план курса «Большие вызовы. Современная энергетика»

№ тем ы	Наименование раздела, темы	Контактная работа обучающихся с преподавателем, ч.		
		Теори Практика Всего		
		Я		
Разде.	п 1. Научно-технологическая	16	44	60
деятел	ТЬНОСТЬ			
1	Лекция 1. Основы современной	2		2
	энергетики			
2	Практика 1. Расчет выбросов		2	2
	углекислого газа в и оксидов азота в			
	атмосферу			
3	Лекция 2. Профессии в области	2		2
	энергетики			
4	Лекция 3. Системы	2		2
	централизованного энергоснабжения			
	страны			
5	Лекция 4. Возобновляемые источники	2		2
	энергии: ветер и солнце			
6	Практика 4. Решение задач с		2 2	
	возобновляемыми источниками			
	энергии			
7	Лекция 5. Возобновляемые источники	1 2 2		2
	энергии: геотермальная и			
	гидроэнергетика			
8	Практика 5. Решение задач с	2		2
	возобновляемыми источниками			
	энергии			
9	Практика 6. Решение практических		4	4
	задач по физике			
10	Лекция 7. Создание	2		2
	энергоэффективных объектов и			
	установок			
11	Лекция 8. Водородная энергетика	2		2
12	Практика 8. Водородная энергетика		4	4
13	Лекция 9. Работа с	2		2
	микроконтроллером Arduino			
14	Практика 9. Работа с	2 2		2
	микроконтроллером Arduino			
15	Работа над научно- технологических		12	12
	проектом			

16	Доработка научно- технологических		6	6
	проектов			
17	Предзащита научно-технологических		2	2
	проектов			
18	Итоговая защита научно-		4	4
	технологических проектов			
19	Итоговое тестирование		2	2
Разде	л 2.Большие вызовы	4		4
20	Обсуждение научно-технических	2		2
	проектов для конкурса			
21	Разбор проектных задач в области	2		2
	энергетики			
Разде	л 3. Проектная деятельность		8	8
22	Мастер-класс «Структура		2	2
	презентации»			
23	Мастер-класс «Необитаемый остров»		2	2
24	Тренинг по ораторскому искусству		4	4
	Итого:			80

Содержание курса

«Большие вызовы. Современная энергетика»

Раздел 1. Научно-технологическая деятельность.

Тема 1. Основы современной энергетики.

Теория. Разбор понятия энергия и для чего она нужна. На чем строится область современной энергетики. История развитие и состояние современной энергетики на данный момент.

Практика. Расчет выбросов углекислого газа и оксидов азота в атмосферу. Рассчитать выбросы углекислого газа СО2 и оксидов азота NO в атмосферу при сжигании топлива на ТЭЦ для получения электрической энергии на бытовые нужды (освещение помещения и нагрев воды в электрическом чайнике), и работу автомобиля для одного человека в сутки, проживающего в помещении, площадью S, м² и имеющего 1 автомобиль.

Форма подведения итогов: беседа и индивидуальное задание.

Тема 2. Профессии в области энергетики.

Теория. Знакомство с профессии в области энергетики. Актуальные, востребованные и высокооплачиваемые профессии в энергетики. А также разбор необходимых знаний и навыков для этой области.

Форма подведения итогов: беседа.

Тема 3. Системы централизованного энергоснабжения страны.

Теория. В нашей стране, электроснабжение потребителей в основном осуществляется от системы централизованного энергоснабжения Единой энергетической системы России.

Форма подведения итогов: беседа

Тема 4. Возобновляемые источники энергии: солнце и ветер.

Теория. Ветер и солнце как источник для получения электрической энергии. Актуальность и востребованность в современном мире.

Практика. Решение задач с возобновляемыми источниками энергии. Рассчитать мощность горизонтально-осевой ветроэнергетической установки и определить характеристики солнечного модуля.

Форма подведения итогов: беседа и индивидуальное задание.

Тема 5. Возобновляемые источники энергии: геотермальная и гидроэнергетика.

Теория. Как развивается геотермальная и гидроэнергетика. Необходимые условия для получения электрической энергии.

Практика. Решение задач с возобновляемыми источниками энергии. Рассчитать параметры плотины для равнинной реки и определение типа геотермального района.

Форма подведения итогов: беседа и индивидуальное задание.

Тема 6. Решение практических задач по физике.

Практика. Решение задач, на которых строится вступительное испытание в центр «Сириус» (г.Сочи).

Форма подведения итогов: тестирование.

Тема 7. Создание энергоэффективных объектов и установок.

Теория. Устройство и оборудование для энергоснабжения объектов, схемы электроснабжения объектов с использованием возобновляемых источников энергии.

Форма подведения итогов: тестирование.

Тема 8. Водородная энергетика.

Теория. Знакомство с учебно-методическими стендами, работа которых основана на химических веществах: водород, ванадий.

Практика. Проведение лабораторных работ на учебно-методических стендах.

Форма подведения итогов: беседа и индивидуальное задание.

Tema 9. Работа с микроконтроллером Arduino

Теория. Знакомство с программированием. Знакомство с основными элементами цепи: генераторы, приемники; активные и пассивные элементы электрической цепи. Последовательное и параллельное соединение проводников. Подготовка к тестированию в центр «Сириус» (г.Сочи).

Практика. Программирование в программе Tinkercad. Пборка различных схем с помощью Arduino. Использование таких электронных компонентов как: микроконтроллер Arduino, макетная плата, резисторы, светодиоды, датчик тока, потенциометр, транзистор и др.

Форма подведения итогов: беседа и индивидуальное задание.

Тема 10. Работа над научно-техническим проектом.

Практика. Разработка практико-технологического или научноисследовательского проекта (есть вариативность в зависимости от проекта, обучающегося и наличия оборудования). Возможно использовать другие лаборатории регионального центра Сириус 26.

Форма подведения итогов: индивидуальное задание.

Тема 11. Итоговая защита научно-технологических проектов.

Практика. Представление собственного научно-технологического

проекта перед экспертной комиссией.

Форма подведения итогов: индивидуальное задание.

Тема 12. Итоговое тестирование.

Практика. Проверка знаний, приобретенных в течение смены.

Форма подведения итогов: тестирование.

Раздел 2. Большие вызовы

Тема 13. Обсуждение научно-технологических проектов для конкурса.

Теория. Основная информация о Всероссийском конкурсе научнотехнологических проектов «Большие вызовы». Этапы конкурса. Особенности проведения.

Форма подведения итогов: беседа.

Тема 14. Разбор проектных задач в области энергетики.

Теория. Знакомство с треком «Современная энергетика» конкурса «Большие вызовы». Просмотр конкурсных работ и итоговых защит прошлых лет.

Форма подведения итогов: беседа.

Раздел 3. Проектная деятельность.

Тема 15. Основы проектной деятельности.

Теория. Изучение основ оформления успешной презентации. Отработка основных приемов работы проектной деятельности. Основы успешного публичного выступления.

Форма подведения итогов: беседа.

РАБОЧАЯ ПРОГРАММА УЧЕБНО-ТРЕНИНГОВОГО КУРСА «ЭНЕРГЕТИКА БУДУЩЕГО»

Учебно-отборочный курс «Старт в современную энергетику» предназначен для обучающихся 9-11 классов, подавших заявку на участие в региональном треке Всероссийского конкурса научно-технологических проектов «Большие вызовы».

Курс знакомит обучающихся с основными понятиями электричества и термодинамики, направлен на решение типовых задач, а также знакомство с основными понятиями современной энергетики.

Курс позволяет обучающимся изучить основные понятия, на которых строятся базовые необходимые знания для работы в области энергетики.

Курс реализуется в дистанционном формате. По окончанию курса обучающийся загружает презентацию и паспорт своего проекта.

No Наименование раздела, темы Контактная работа обучающихся с темы преподавателем, часов Теория Практика Всего Основы проектной деятельности в 1. 1 1 2 энергетике. 2. 1 2 1 Альтернативная энергетика. 3. 2 1 1 Водородная энергетика. 4. Творческое задание. 2 2 5 3 Итого: 8

Тематический план

СОДЕРЖАНИЕ УЧЕБНО-ТРЕНИНГОВОГО КУРСА «ЭНЕРГЕТИКА БУДУЩЕГО»

Тема 1. Основы проектной деятельности в энергетике.

Теория: проект, жизненный цикл проекта, постановка целей и задач.

Тема 2. Альтернативная энергетика.

Теория: энергия солнца, энергия ветра, гидро и геотермальная энергетика.

Тема 3. Водородная энергетика.

Теория: химические источники энергии, ванадиева редокс-батарея, топливные элементы.

Тема 4. Творческое задание.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценивание результативности деятельности обучающихся направлено на анализ освоения обучающимися содержания дополнительной общеобразовательной общеразвивающей программы.

Оценка уровня усвоения содержания образовательной программы проводится по следующим показателям:

- степень усвоения содержания;
- степень применения знаний на практике;
- умение анализировать и делать выводы.

Освоение обучающимися содержания дополнительной образовательной программы проводится с помощью следующих форм контроля: входной, промежуточный, итоговый (тематический).

1) Входной контроль

Цель входного контроля — оценка общего уровня подготовки каждого обучающегося и группы в целом. Входной контроль проводится дистанционно в форме отборочного теста, который проводится после прохождения учебно-отборочного курса. По результатам входного контроля составляется рейтинговая таблица, которая используется для принятия решения о зачислении школьника на основную программу.

Для оценивания знаний учащихся используется 100-балльная система.

Оценка параметров входного контроля

Наименование уровня/оценка	Результат диагностики,
	%
Элементарный	0-49 %
уровень/неудовлетворительно	
Низкий уровень/удовлетворительно	50 – 69 %
Средний уровень/хорошо	70 – 84 %
Высокий уровень/отлично	85 – 100 %

2) Промежуточная аттестация

Проводится в конце первого и третьего модуля в форме теста или самостоятельной работы с самопроверкой.

3) Итоговая аттестация

Завершает второй модуль образовательной программы, который проводится в очной форме.

Итоговая аттестация проводится в форме публичной защиты проектов перед членами экспертной комиссии.

Результатом работы на профильной смене является средний балл оценивания проекта экспертной комиссией.

Формы отслеживания результатов: наблюдение, тестирование, выполнение индивидуального задания, публичная защита проекта.

Формы фиксации результатов: рейтинговая таблица по результатам тестирований и защиты проекта.

Документальной формой подтверждения участия, обучающегося в образовательной программе и её освоения является документ об обучении «Сертификат» (без оценки) установленного региональный центром «Сириус образца.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

№	Название раздела,	Формы учебного	Формы, методы, приемы обучения.	Материально-техническое	Формы
п/п	темы	занятия	Педагогические технологии	оснащение, дидактико-	контроля/
				методический материал	аттестации
1.	Учебно-отборочный	дистанционная	Частично-поисковый.	Персональный компьютер. Доступ	Тестирование
	курс «Старт в		Исследовательский.	к сети интернет.	
	современную				
	энергетику»				
2.	Учебный курс	очная	Объяснительно-иллюстративный.	Персональный компьютер. Доступ	Защита проекта
	«Большие вызовы.		Проблемный. Проектный.	к сети интернет. Проекционное	
	Современная		Частично-поисковый.	оборудование. Учебный	
	энергетика»		Исследовательский.	комплексом альтернативного	
				обеспечения помещения. Учебно-	
				методический стенд«Ванадиевая	
				редокс-батарея». Учебно-	
				методический стенд	
				«Твердооксидные микротрубчатые	
				топливные элементы». Учебно-	
				методический стенд «Накопители	
				электроэнергии»	
3.	Учебно-тренинговый	дистанционная	Частично-поисковый.	Персональный компьютер. Доступ	Тестирование с
	курс «Энергетика		Исследовательский.	к сети интернет.	самопроверкой.
	будущего»				

КАДРОВОЕ ОБЕСПЕЧЕНИЕ

Обеспечение реализации программы, нацеленной на предоставление высокого качества обучения, планируется за счет штата, состоящего из высококвалифицированных специалистов, обладающих определенными компетенциями и выполняющими определенный функционал.

ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО КУРСУ

Для реализации курса «Большие вызовы. Современная энергетика» помещение должно соответствовать следующим характеристикам:

- аудитории, оборудованы интерактивной доской, флипчартом, проектором, ноутбуком, учебным комплексом альтернативного обеспечения помещения, учебно-методическим стендом «Ванадиевая редокс-батарея», учебно-методическим стендом «Твердооксидные микротрубчатые топливные элементы», учебно-методическим стендом «Накопители электроэнергии»
- каждый обучающийся выполняет практические работы за отдельным компьютером с сохранением результатов в сетевой папке.

Лицензионное программное обеспечение:

- Пакет Microsoft Office
- Компас-3D;
- Adobe Reader;
- Arduino IDE.

УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

- 1. Перечень литературы, необходимой для освоения программы:
- 1.1. Перечень литературы, использованной при написании программы:
 - 1. Буйлова Л.Н. Концепция развития дополнительного образования детей: от замысла до реализации. Методическое пособие / Л.Н. Буйлова, Н.В. Кленова. М.: Педагогическое общество России, 2016.- 192 с.
 - 2. Буйлова Л.Н. Технология разработки и экспертизы дополнительных образовательных программ и рабочих программ курсов внеурочной деятельности: методическое пособие.- М.: ГАОУ ВО МИОО, 2015.- 155с. [Электронный ресурс] // https://www.slideshare.net/rnmc7/ss 79081944.
 - 3. Методические комментарии к написанию образовательных программ дополнительного образования детей. Государственное общеобразовательное учреждение Центр образования «Санкт Петербургский городской Дворец творчества юных». Городской центр развития дополнительного образования: Санкт-Петербург. 2011. [Электронный ресурс] // http://baseold.anichkov.ru/files/gzrdo/public/pedagog_orient/%2316-2013/04/4-01_.pdf.
- 4. Методические рекомендации по разработке (составлению) дополнительной общеобразовательной общеразвивающей программы / авторы-составители: преподаватели кафедры теории и практики воспитания. ГБОУ ДПО «Нижегородский институт развития образования» [Электронный ресурс] *И*http://www.niro.nnov.ru/?id=32429.
- 5. Энерджиквантум тулкит. Ларькин Андрей Владимирович: Базовая серия «Методический инструментарий тьютора». М.: Фонд новых форм развития образования. 2017.- 120 с.

1.2. Перечень литературы, рекомендованной обучающимся:

- 1. Косько А.Н. Большая энергетика. Что почему и как с этим жить? / Косько А.Н., Дискус, 2022, 224 с.
- 2. Сибикин Ю.Д. Альтернативные источники энергии. / Сибикин Ю.Д., Сибикин М.Ю., ИНФА-М, 2023, 247 с.
- 3. Зубова Н.В. Возобновляемые источники энергии / Зубова Н.В., Митрофанов С. В., НГТУ НЭТИ, 2021.
- 4. Зырянов В.М. Актуальная ветроэнергетика. Генерация и накопление энергии / Зырянов В.М., Роткин В., Лимонов Л., Соколовский Ю., НЭТИ, 2021, 212 с.
- 5. Хоровиц П., Уинфилд Х. Искусство схемотехники / Хоровиц П., Уинфилд Х., Бином, 2020, 704 с.

1.3. Перечень литературы, рекомендованной родителям:

- 1. Хоровиц П., Уинфилд X. Искусство схемотехники / Хоровиц П., Уинфилд X., Бином, 2020, 704 с.
- 2. Сворень Р.А. Электричество шаг за шагом / Сворень Р.А, ДМК Пресс, 2019, 460 с.
- 3. Виссарионов В.И. Солнечная энергетика. Методы расчетов. / Виссарионов В.И., Дерюгина Г.В., Кузнецова В.А., Малинин Н.К., Солнечная энергетика, 2008, 317 с.

1.4. Перечень раздаточного материала:

1. Тематические презентации

2. Информационное обеспечение

Учебный комплекс альтернативного энергообеспечения помещения, Tinkercad, Paint, PowerPoint.

- **2.1 Перечень ресурсов информационно-телекоммуникационной сети** «Интернет», необходимых для освоения программы:
 - Альтернативные источники энергии: https://www.youtube.com/watch?v=B3YgdRX Z1X0
 - Энергия будущего. 10 источников альтернативной энергии:

https://www.youtube.com/watch?v=YYfrj3g50 Co

- Учебный фильм, подготовлен «Союзвузфильм» в 1983 году. «Солнечная энергетика»: https://www.youtube.com/watch?time_continu e=1&v=yse1kshIi4A&feature=emb_logo Галилео.
 - Солнечные батареи: https://www.youtube.com/watch?v=6gicYfuIeI 4
 - Элементарно. Солнечная батарея (как устроена)

https://www.youtube.com/watch?v=6vkd8vA1uk8&feature=emb_lo go

- Научно-популярный канал «Наука 2.0» Фильм «Солнечное электричество»: https://www.youtube.com/watch?v=XhmIncGJOMQ
 - Как работает ветряная электростанция:

https://www.youtube.com/watch?v=nGTxUyHXszI

- Водород. Учебный фильм для школьников по химии (СССР) https://www.youtube.com/watch?v=XbbXJrVr8wI
- Научно-популярный канал «Наука 2.0» Фильм «Механическая энергия»: https://www.youtube.com/watch?v=vkkNCmX HUr0
- Урок по теме механическая энергия

 https://interneturok.ru/lesson/physics/10- klass/bzakony-sohraneniyawmehanikeb/mehanicheskaya-energiya-zakon izmeneniya-sohraneniya-mehanicheskoy energii
- Видео из источника HI-News.ru (ветряная энергетика) https://www.youtube.com/watch?v=nGTxUyH XszI
- Видео о магнетизме «просто физика»
 https://ru.wikipedia.org/wiki/Магнетизм

https://www.youtube.com/watch?v=HDkoMt4 V5Vk

- Основы сборки радио https://ru.wikipedia.org/wiki/Paдио
- Основные инстурменты, функции программы Tinkercad
 https://www.qbed.space/knowledge/blog/tinkercad-for-beginners-part-1
- Горячие клавиши программы Tinkercad https://www.ixbt.com/live/3d-modelling/gayd-po-osnovam-3d-modelirovaniya-znakomstvo-s-autodesk-tinkercad.html#pid=7