

РЕГИОНАЛЬНЫЙ ЦЕНТР ВЫЯВЛЕНИЯ, ПОДДЕРЖКИ И РАЗВИТИЯ СПОСОБНОСТЕЙ И ТАЛАНТОВ ДЕТЕЙ И МОЛОДЁЖИ СТАВРОПОЛЬСКОГО КРАЯ «СИРИУС 26»

СОГЛАСОВАНО

Экспертным советом регионального центра выявления, поддержки и развития способностей и талантов детей и молодёжи Ставропольского края «Сириус 26», протокол № 1/2025 от 03.02.2025 г.

УТВЕРЖДЕНО

Директором Центра «Поиск»

Томилиной О.А.

приказ № 13/1 от 04.02.2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«СЕЛЬСКОХОЗЯЙСТВЕННАЯ РОБОТОТЕХНИКА»

Направленность: техническая

Возраст обучающихся: 15-17 лет

Объем программы: 90 часов

Срок освоения: 2 месяца

Форма обучения: очная с использованием дистанционных

образовательных технологий

Автор программы: Пономаренко Елена Александровна, руководитель

структурного подразделения методического

объединения информационные технологии центра

«Поиск»;

Шевцов Юрий Геннадьевич, методист центра

«Поиск»

ОГЛАВЛЕНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 2	
УЧЕБНЫЙ ПЛАН	8
КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК	9
РАБОЧАЯ ПРОГРАММА УЧЕБНО-ОТБОРОЧНОГО КУРСА	10
«РОБОТОТЕХНИКА КАК ОТВЕТ НА ВЫЗОВЫ	10
СЕЛЬСКОГО ХОЗЯЙСТВА»	10
СОДЕРЖАНИЕ КУРСА 11	
«РОБОТОТЕХНИКА КАК ОТВЕТ НА ВЫЗОВЫ	11
СЕЛЬСКОГО ХОЗЯЙСТВА»	11
РАБОЧАЯ ПРОГРАММА КУРСА «СЕЛЬСКОХОЗЯЙСТВЕННАЯ РОБОТОТЕХНИКА	»12
СОДЕРЖАНИЕ КУРСА «СЕЛЬСКОХОЗЯЙСТВЕННАЯ РОБОТОТЕХНИКА»	13
МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ	20
ОЦЕНОЧНЫЕ МАТЕРИАЛЫ	22
КАДРОВОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ26	
МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ	
ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ПРОГРАММЕ26	
УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ28	
ОБЕСПЕЧЕНИЕ ПРОГРАММЫ28	

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1. Основные характеристики программы

Образовательная программа «Сельскохозяйственная робототехника» предназначена для учащихся, интересующихся современными технологиями в сельском хозяйстве. Роботизация проникла и в сферу сельского хозяйства. В последние годы всё активнее ведется внедрение автоматизированных и роботизированных решений на всех этапах тепличного растениеводства и овощеводства.

В связи с переходом экономики России на новый технологический уклад широкое использование наукоёмких технологий предполагается оборудований с высоким уровнем автоматизации и роботизации. Для перехода технологиям необходима система подготовки инновационной экономики (ученик рабочий дипломированный специалист), на современных подходах и мотивации. Большое значение имеет образовательных учреждений России участие в Общероссийской образовательной программе «Робототехника: инженерно-технические кадры инновационной России».

В настоящее время различные виды роботов находят всё большее применение в машиностроении, медицине, космической промышленности, сельском хозяйстве и т.д.

1.1. Направленность программы

Дополнительная общеобразовательная общеразвивающая программа «Сельскохозяйственная робототехника» имеет техническую направленность.

Программа направлена на формирование современного агротехнологического мышления обучающихся, развитие мотивации к познанию и творчеству через овладение современными технологиями и учебно-исследовательской деятельностью в области робототехники в условиях «умного» сельского хозяйства.

1.2. Адресат программы

Программа адресована обучающимся от 15 до 17 лет.

Программа предназначена для одаренных школьников 9-10 классов, проявляющих повышенный интерес к современным технологиям в области сельского хозяйства, обладают высокой мотивацией к обучению и стремятся развивать навыки XXI века, а также получить глубокие теоретические и практические знания о современных технологиях в этой сфере.

1.3. Актуальность программы

Дополнительная общеобразовательная общеразвивающая программа «Сельскохозяйственная робототехника» направлена на развитие творческого подхода к робототехнике и стимулирование интереса к се льскому хозяйству у учащихся. Она также даёт представление о роли робототех ники в сельскохозяйственной отрасли. Программа способствует раскрытию пот

енциала учащихся, определению их потенциальных возможностей и осознании своей роли в окружающем мире. В итоге у учащихся появляется стремление ста ть профессионалами, исследователями и новаторами в этой области.

1.4. Отличительные особенности/новизна программы

Современная робототехника и программирование – одно из важнейших направлений научно-технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта. Стремительное развитие робототехники в мире является закономерным процессом, который вызван принципиально новыми требованиями рынка к качества технологических показателям машин и движущихся Современное общество нуждается в высококвалифицированных специалистах, высокопроизводительному К труду, технически насыщенной производственной деятельности.

Уровень освоения программы – углубленное изучение современных технологий в сельском хозяйстве, автоматизации и роботизации процессов в области робототехники и программирования.

1.5. Объем и срок освоения программы

Объем программы – 90 часов.

Срок реализации программы – 10 недель.

1.6. Цели и задачи программы

Цель программы — выявление, развитие и продвижение талантливых детей Ставропольского края в области робототехники, прототипирования и программирования, а также их вовлечение в государственные программы поддержки. Программа направлена на знакомство учащихся с современными технологиями в сельском хозяйстве и формирование навыков работы с сельскохозяйственными роботами.

Задачи программы

- 1) Обучающие:
- влияние факторов внешней среды на урожайность овощных культур;
- знать основные приемы возделывания овощных культур на защищенных грунтах;
 - преимущества и недостатки различных конструкций теплиц;
 - принципы программирования контроллеров на основе Ардуино;
 - основные принципы построения программ;
 - основные конструкции языка программирования Си++;
 - основные методы работы с датчиками и устройствами управления;

_

2) Развивающие:

- развитие способностей по самостоятельному приобретению знаний, умений, навыков, ускорение процесса перехода от обучения к научению, самообучению наивысшей ступени образовательного процесса;
 - развитие способностей эффективной работы в условиях ограничений;
- развитие умений эффективного использования возможностей информационной среды;
- формирование способностей выдвигать и доказывать гипотезы опытным путем, разрабатывать стратегию решения, прогнозировать результаты своей деятельности, анализировать и находить рациональные способы решения задачи путем оптимизации, детализации созданного алгоритма;
 - формирование навыка рефлексивной деятельности.

3) Воспитательные:

- формирование определенного мировоззрения, связанного с устоями и обычаями, национальными и культурными традициями, историей Ставропольского края, межнациональной толерантностью;
- освоение информационной культуры: ответственного отношения к информации с учетом правовых и этических аспектов ее распространения, избирательного отношения к полученной информации;
- восприятие системы ценностей, принципов, правил, стереотипов информационного общества;
 - формирование умений работать в команде;
- ранняя профориентация школьников через ознакомление с востребованными профессиями и видам профессиональной деятельности, связанными с цифровыми технологиями.

1.7. Планируемые результаты освоения программы

- 1. Предметные результаты:
- понимание принципа построения сельскохозяйственных роботов и недостатки конструкций;
- формирование базовых умений и знаний в области технических и естественно-научных компетенций;
- развитие навыков программирования в современной среде;
- углубление знаний по математике, физике и информатике;
- развитие интереса к научно-техническому и инженерному творчеству;
- формирование общенаучных и технологических навыков конструирования и проектирования;
- развитие творческих способностей учащихся.

2. Метапредметные результаты:

- способность соотносить и оценивать результаты своей деятельности с поставленной целью;

- использование цифровых технологий в качестве инструмента достижения цели;
- понимание связи цифровых технологий с другими научными направлениями;
- осуществление саморефлексии и рефлексии деятельности группы, результатом которой будет опробование новых стратегий поведения внутри своих же ролей.

3. Личностные результаты:

- понимание и правильное оценивание своих возможностей;
- развитие навыков группового общения, умения работать в команде;
- обучение рациональному распределению времени работы;
- формирование способностей эффективно распределять роли в ходе выполнения командной работы.

2. Организационно-педагогические условия реализации программы

2.1. Язык реализации программы

Реализация дополнительной общеобразовательной общеразвивающей программы «Сельскохозяйственная робототехника» осуществляется на государственном языке Российской Федерации (на русском языке).

2.2. Форма обучения: очная с использованием дистанционных образовательных технологий.

2.3. Особенности реализации программы

Программа реализуется по модульному принципу с использованием дистанционных образовательных технологий.

2.4. Условия набора и формирования групп

На обучение зачисляются обучающиеся 9-10 классов общеобразовательных школ Ставропольского края:

- 1) по результатам конкурсного отбора успешного прохождения учебно отборочного курса «Робототехника как ответ на вызовы сельского хозяйства»;
- 2) по результатам участия в олимпиадах и других интеллектуальных конкурсах регионального и всероссийского уровней.

Условия конкурсного отбора гарантируют соблюдение прав обучающихся в области дополнительного образования и обеспечивают зачисление наиболее способных и подготовленных обучающихся к освоению программы.

Состав групп: одновозрастные.

2.5. Формы организации и проведение занятий

Формы организации занятий - дистанционные, аудиторные (под непосредственным руководством преподавателя), внеаудиторные

(самостоятельная подготовка обучающихся к олимпиаде за рамками учебного плана).

Формы проведения занятий: комбинированные, теоретические, практические, самостоятельные, репетиционные, контрольные.

Формы организации деятельности обучающихся:

- фронтальная: работа педагога со всеми учащимися одновременно;
- групповая: организация работы в малых группах, в т.ч. в парах, для выполнения определенных задач; задание выполняется таким образом, чтобы был виден вклад каждого учащегося;
- коллективная: организация проблемно-поискового взаимодействия между всеми детьми одновременно;
- индивидуальная: организуется для коррекции пробелов в знаниях и отработки отдельных навыков.

Режим занятий. Программа реализуется в г. Ставрополе в очной форме пять раз в неделю по восемь учебных часов в течение 10 учебных дней.

Дистанционная форма обучения: обучающиеся проходят учебноотборочный курс в течение 2-х недель, который завершается отборочным тестированием и выполнением творческих заданий или заданий с развернутым ответом.

Обучающиеся, участвующие в очной профильной смене по её завершении проходят в течение 3-х недель учебно-тренинговый курс и получают сертификат об освоении программы установленного Региональным центром «Сириус 26» образца.

Продолжительность одного урока (академического часа) – 40 минут. Учебное занятие состоит из двух уроков.

Основные методы и формы реализации содержания программы

Метод двумерной дидактики

В качестве основного метода обучения используется метод двумерной дидактики. Необходимость использования этого метода возникает в том случае, когда знаний, умений и навыков обучающихся, полученных на уроках в школе, не достаточно для освоения дополнительной программы. Метод предполагает подбор таких форм обучения, чтобы ребенок не просто решил задачу, а освоил терминологию и технологию, понял суть и смысл, оценил достоинства и недостатки предлагаемого или полученного решения, предложил другие варианты решения, и всё это осуществляется в весьма сжатые сроки. Таким образом, суть метода двумерной дидактики заключается в том, чтобы в зависимости от уровня подготовки детей, организовать учебный процесс. результативный Системное использование двумерной дидактики способствует усвоению сложного материала с опережением на несколько лет. Это происходит в результате спирального

дублирования данных и информации, расширения поля понятий и знаний, применения в разных ситуациях и рассмотрения с разных точек зрения.

Проблемный метод

Проблемный метод включает спектр приемов, которые используются выполнения заданий с неоднозначными вариантами разрешения противоречий в условиях недостатка или избытка информации. Основная образовательная цель проблемного метода заключается овладении аналитическими обучающимися операциями такими, как сравнение, сообщение, выводы, за счет активной мыслительной деятельности в процессе решения разнообразных задач повышенного уровня сложности. Все задания базируются на имеющихся знаниях и умениях, однако предусматривают самостоятельный поиск новых знаний, сведений и фактов, потребуются для. В результате осознание недостаточности собственных знаний мотивирует ребенка на поиск новых знаний, а это одно из важнейших условий творческого госта и развития.

Следует обратить внимание на самое важное достоинство проблемного метода обучения - это овладение технологией принятия решений в условиях ситуации неопределенности и/или неоднозначности, влекущих за собой разработку различных вариантов решения проблемы, предусматривающих дефицит информации и данных, финансовые ограничения, недостатки ресурсов.

Словесные методы

Лекция с обратной связью - один из словесных методов при изложении теоретических сведений, характеризующийся тем, что при изложении материала учитель периодически задает вопросы с целью выяснения усвоения содержания. Вопросы планируются и формулируются заранее для определенных контрольных точек.

Эвристическая беседа - вопросно-ответная форма. Свое название эвристическая беседа получила от греческого «эвристика» - отыскиваю, открываю. Суть метода заключается в том, что учитель выстраивает определенный ряд вопросов, которые направляют мысли и ответы детей в нужное русло. Он базируется на интуитивных и неявных знаниях детей, полученных на основе самостоятельного опыта. Эвристическая беседа может использоваться в качестве мотивационной беседы, особенно при введении в новую тему.

Метод дизайн-мышления

Это метод создания продуктов/услуг, ориентированных на интересы пользователя. Любая идея здесь — это решение потребности человека. Принципы дизайн-мышления:

- 1) Ошибайся раньше, ошибайся чаще.
- 2) Создай прототип вместо того, чтобы рассказать о продукте.
- 3) В первую очередь зафиксируй пожелания пользователя.
- 4) Делай продукт вместе с пользователем.

Три кита дизайн-мышления:

- 1) Процесс: есть алгоритм, интерактивность, смешанные команды;
- 2) Подход: человекоцентричность, эмпатия, культ быстрых ошибок; Среда: осязаемый мыслительный процесс, возможность «думать руками».

УЧЕБНЫЙ ПЛАН

No	Наименование модуля,	Контактная работа			Формы
тем	учебного курса	обучающихся с			контроля /
Ы		препо	давателем,	часов	аттестации
		Теория	Практика	Всего	
1.	Учебно-отборочный	2	2	4	Тест с
	курс «Робототехника				самопроверко
	как ответ на вызовы				й.
	сельского хозяйства»				Творческое
					задание.
2.	Учебный курс				Хакатон
	«Сельскохозяйственная	36	44	80	технического
	робототехника»				творчества.
3.	Учебно-тренинговый				Тест с
	курс «Роботизация и				самопроверко
	автоматизация в	3	3	6	й.
	производстве	3	3	6	
	сельскохозяйственной				
	техники»				
	Ижара	41	49	90	
	Итого:	41	49	90	

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Наименование модуля, учебного курса	Дата начала обучения	Дата окончания обучения	Количество учебных недель	Количество учебных дней	Количество учебных часов	Режим занятий
Учебно-отборочный курс «Робототехника как ответ на вызовы сельского хозяйства»	05.05.2025	21.05.2025	2	14	4	Дистанционное обучение
Учебный курс «Сельскохозяйственная робототехника»	16.06.2025	28.06.2025	2	10	80	Очное обучение, 5 раз в неделю по 8 часов
Учебно-тренинговый курс «Роботизация и автоматизация в производстве сельскохозяйственной техники»	28.06.2025	20.07.2025	3	21	6	Дистанционное обучение

РАБОЧАЯ ПРОГРАММА УЧЕБНО-ОТБОРОЧНОГО КУРСА «РОБОТОТЕХНИКА КАК ОТВЕТ НА ВЫЗОВЫ СЕЛЬСКОГО ХОЗЯЙСТВА»

Курс «Робототехника как ответ на вызовы» предназначен для обучающихся 9-10 классов. Изучение перспективного направления позволит стать специалистом в разработке, программировании и поддержке роботизированных систем, которые облегчат труд фермеров и повысят эффективность сельского хозяйства.

В курсе «Робототехника как ответ на вызовы сельского хозяйства» рассматриваются основные понятия: законы робототехники, классификации роботов, сенсорные системы роботов, приводы, движители, управляющая система робота, основные режимы управления роботами.

В результате освоения учебного курса обучающийся должен:

знать:

- законы робототехники;
- классификации роботов;
- сенсорные системы робота;
- приводы;
- типы захватывающих устройств;
- системы передвижения роботов;
- управляющая система роботов.

уметь:

- формализовать поставленную задачу;
- использовать современные технологии и инструментальные средства.

Тематический план курса

№		Контактная работа				
	Наименование раздела, темы		обучающихся с			
	тинменование раздела, темы	преподавателем, час.				
			Практика	Всего		
1	Три закона робототехники.	1		1		
2	Основные компоненты робота.		1	1		
3	Классификация роботов.	1		1		
4	Тестирование. Творческое задание.		1	1		
	Итого:	2	2	4		

СОДЕРЖАНИЕ КУРСА «РОБОТОТЕХНИКА КАК ОТВЕТ НА ВЫЗОВЫ СЕЛЬСКОГО ХОЗЯЙСТВА»

Тема1. Три закона по робототехнике.

Теория. История возникновения слова «робот», законы по робототехнике, автоматоны, манипуляторы.

Практика. Ответы на контрольные вопросы, выполнение практических заданий.

Тема 2. Основные компоненты робота.

Теория. Система управления роботом; сенсоры, реагирующие на взаимодействие робота с внешней средой; захватывающие устройства; источники энергии; приводы; движители.

Практика. Изучение классификации сенсорной системы, типов захватывающих устройств; рассмотрение «органов чувств» робота, механических систем передвижения роботов.

Тема 3. Классификация роботов.

Теория. Классификация роботов по разным признакам: типу управления, способу передвижения, сфере применения. Классификация роботов по назначению.

Форма подведения итогов: тестирование и выполнение творческого задания.

РАБОЧАЯ ПРОГРАММА КУРСА «СЕЛЬСКОХОЗЯЙСТВЕННАЯ РОБОТОТЕХНИКА»

Курс «Сельскохозяйственная робототехника» предназначен для обучающихся 9-10 классов.

В рамках курса школьники научаться разрабатывать и программировать сельскохозяйственных роботов.

В курсе «Сельскохозяйственная робототехника» рассматриваются следующие вопросы: роботы в сельском хозяйстве; простые механизмы и их применение в сельском хозяйстве; прототипирование; моделирование и программирование беспилотного наземного транспорта; агрокоптеры; агроботы; роботы на производстве.

В результате освоения учебного курса обучающийся должен:

знать:

- знать современные платформы в робототехнике, способы программирования датчиков и моторов, основы создания робототехнических платформ;
- знать основные приемы возделывания овощных культур на защищенных грунтах;
- принципы программирования контроллеров на основе Ардуино;
- основные принципы построения программ;
- основные конструкции языка программирования Си++;
- основные методы работы с датчиками и устройствами управления.

уметь:

- уметь использовать платы Arduino;
- использовать современные технологии и инструментальные средства;
- тестировать и отлаживать программы с целью повышения надёжности и эффективности;
- владеть набором знаний и установленных правил для создания программ на языке Си в среде программирования Arduino;
- применять датчики и устройства управления для создания и программирования роботов, способных выполнять различные сельскохозяйственные задачи, такие как сбор урожая, мониторинг

состояния почвы и растений, а также автоматизация процессов полива и удобрения.

Тематический план

No	Наименование раздела, темы	Кон	тактная раб	ота
тем	-	обучающихся с		c
Ы		препо	давателем,	насов
		Теория	Практика	Всего
1	Робототехника в сельском хозяйстве.	2		2
2	Простые механизмы и их применение в		2	2
	сельском хозяйстве.		_	_
3	3D моделирование. Прототипирование.	12	12	24
4	Моделирование и программирование	2 2 4		4
	беспилотного наземного транспорта.			7
5	5 Агрокоптеры. Пилотирование.		6	8
6	6 Агроботы. Пробные заезды.		6	8
7 Преобразование и накопление энергии.		2	2	4
8	8 Роботы на производстве.		2	4
9	Основы проектной деятельности.		4	8
10	10 Хакатон технического творчества.		8	8
11	Экскурсии в Ставропольские аграрии.	8		8
	Итого	36	44	80

СОДЕРЖАНИЕ КУРСА «СЕЛЬСКОХОЗЯЙСТВЕННАЯ РОБОТОТЕХНИКА»

Тема. Робототехника в сельском хозяйстве

Теория. Основы робототехники: принципы работы, классификация роботов, основные компоненты и механизмы. Робототехнические системы для сбора урожая: принципы работы, преимущества и недостатки разных типов роботов. Роботы для прополки и ухода за растениями: особенности конструкции, алгоритмы работы и эффективность применения. Робототехника в животноводстве: автоматические системы кормления, доения и контроля здоровья животных. Безопасность и экологичность робототехнических систем в сельском хозяйстве: меры по снижению негативного воздействия на окружающую среду.

Применение робототехники Практика. В сельском хозяйстве: автоматизация процессов, борьба с вредителями и болезнями растений, мониторинг и прогнозирование урожайности. Технологии точного земледелия: датчиков использование GPS. И сенсоров ДЛЯ оптимизации сельскохозяйственных процессов. Управление и интеграция робототехнических систем: программное обеспечение, коммуникации и протоколы обмена эффективность перспективы данными. Экономическая И развития робототехники в сельском хозяйстве: анализ затрат и выгод, прогнозы рынка.

Тема. Простые механизмы и их применение в сельском хозяйстве

Теория. История возникновения и развития простых механизмов в сельском хозяйстве. Преимущества применения простых механизмов в сельском хозяйстве (повышение производительности труда, снижение физической нагрузки на работников, улучшение экологической ситуации).

Практика. Принципы работы простых механизмов (рычаг, блок, наклонная плоскость). Основы конструкции и применения простых механизмов, проводить исследования и анализировать практические примеры их использования в сельском хозяйстве.

Тема. 3D моделирование. Прототипирование

3D-моделирование — ЭТО процесс создания объёмных изображений помощью специальных компьютерных программ нейросетей. Применение 3D-моделирования В различных отраслях. Моделирование автоматизированное (САПР, CAD) и полигональное. Основы 3D-моделирования, принципы, инструменты и программное обеспечение. UVразвёртка и текстурирование 3D-моделей. Рендеринг и визуализация 3Dмоделей. Изучение принципов работы 3D-принтеров, выбор подходящих материалов для печати.

Практика. Знакомство с программами для 3D-моделирования. Создание 3D-моделей, полигональное моделирование, рендеринг и визуализация 3D-моделей, выполнение проектов по созданию 3D-моделей и их последующей печатью на 3D-принтере.

Тема. Моделирование и программирование беспилотного наземного транспорта

Теория. Беспилотный транспорт — знакомство с технологией. Компоненты умного автомобиля: GPS, ультразвуковые датчики, радары, лидары, машинное зрение.

Практика. Основы программирования в симуляторе Тинкеркад. Управление светодиодом. Операторы условия IF-ELSE и работа с кнопками, Датчик освещённости. Цикл FOR. Оператор TONE (работа со звуком). Ультразвуковой датчик расстояния.

Средства обучения: конструктор "набор Динамика Йотик М1". Программное обеспечение: Arduino IDE, Tinkercad, WOKWI.

Тема. Агрокоптеры

Теория. Техника безопасности и требования к эксплуатации беспилотных летательных аппаратов (БПЛА). Роль и место БПЛА в жизни современного общества, историю и перспективы их развития. Основные понятия и технические термины, связанные с БПЛА.

Практика. Основные компоненты и принципы работы БПЛА, конструктивные особенности различных БПЛА и их применения. Способы настройки и подготовки коптера к полёту. Методика проверки работоспособности отдельных узлов и деталей, порядок поиска неисправностей в коптерах. Пилотирование.

Тема. Агроботы

Теория. Основы робототехники. Принципы работы и компоненты роботов. Механика и алгоритмы управления. Основные механические передачи робототехнических систем. Среда программирования роботов.

Практика. Конструкции роботов для соревнований «АгроРоботы». Критерии регламента соревнований. Пробные заезды.

Средства обучения: конструкторы «LEGOMINDSTORMS EV3», «LEGO SPIKE PRIME».

Тема. Преобразование и накопление энергии

Теория. Понятие энергии. Основные виды энергии. Типы источников энергии: невозобновляемые и возобновляемые. Преобразование и накопление энергии.

Практика. Конструкции по теме «Энергия». Сложные модели по теме «Энергия».

Тема. Роботы на производстве

Теория. Типы роботов и их применение на производстве. Основы программирования роботов и использование языков программирования. Основы механики и электроники, необходимые для создания и обслуживания роботов. Принципы работы датчиков и сенсоров, используемых в робототехнике. Основы компьютерного зрения и машинного обучения, применяемые в робототехнике.

Практика. Безопасность при работе с роботами и соблюдение правил

техники безопасности. Примеры успешных проектов и компаний, использующих роботов на производстве. Устройство и принцип работы роботаманипулятора Dobot. Составление программ управления роботом и работу в среде программирования на языке Arduino.

Средства обучения: робот-манипулятор Dobot.

Программное обеспечение: Arduino.

Тема. Основы проектной деятельности

Теория. Основные понятия проектной деятельности. Этапы проекта. Проблематизация. Целеполагание. Планирование деятельности. Scrumметодология управления проектами. Основные понятия и роли.

Практика. Жизненный цикл проекта. Командная игра с использованием Scrum-методологии.

Основные методы и формы реализации содержания программы:

- -информационно-рецептивный,
- -репродуктивный,
- -частично-поисковый,
- -практический.

Форма подведения итогов: хакатон технического творчества.

РАБОЧАЯ ПРОГРАММА УЧЕБНО-ТРЕНИНГОВОГО КУРСА «РОБОТИЗАЦИЯ И АВТОМАТИЗАЦИЯ В ПРОИЗВОДСТВЕ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКИ»

Курс «Роботизация и автоматизация в производстве сельскохозяйственной техники» предназначен для обучающихся 9-10 классов. В курсе рассматриваются основные принципы применения робототехники в сельском хозяйстве, а также разнообразные способы автоматизации и роботизация сельскохозяйственных процессов.

В результате освоения учебного курса обучающийся должен:

знать:

- какие возможности появляются с внедрением роботов в сельском хозяйстве;
- сложность использования роботов в сельском хозяйстве;
- датчики, используемые при роботизации и автоматизации сельского хозяйства;
- плюсы и минусы использования робототехнических систем в сельском хозяйстве.

уметь:

- различать классификацию сельскохозяйственных роботов;
- реалистично оценивать возможность таких процессов как роботизация и автоматизация в сельском хозяйстве.

Тематический план

№ темы	Наименование раздела, темы		я работа обуч подавателем, ч	
		Теория	Практика	Всего
1	Классификация сельскохозяйственных роботов	1		1
2	Роботы в растениеводстве	1	1	2
3	Роботы в животноводстве	1	1	2
4	Тестирование.		1	1
	Ито	го 3	3	6

СОДЕРЖАНИЕ КУРСА

«РОБОТИЗАЦИЯ И АВТОМАТИЗАЦИЯ В ПРОИЗВОДСТВЕ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКИ»

Тема 1. Классификация сельскохозяйственных роботов

Теория. Знакомство с процессом внедрения роботов в сельском хозяйстве. Сложность использования роботов и классификация сельскохозяйственных роботов.

Практика. Соотношение датчиков с их описанием.

Форма подведения итогов: тестирование с самопроверкой.

Тема 2. Роботы в растениеводстве

Теория. Роботизированные тракторы, комбайны, роботы-сборщики и другие роботы.

Практика. Соотношение описания категории роботизированных тракторов и названия. Соотношение названия и описания разновидности зубчатых передач

Форма подведения итогов: тестирование с самопроверкой.

Тема 3. Роботы в животноводстве

Теория. Главная особенность современного животноводства. Автоматизированные системы кормления, выпойки телят, роботы-пастухи.

Практика. Выбрать из предложных выражений ПЛЮСЫ и МИНУСЫ использования робототехнических систем доения коров. Перечислить профессии будущего в сельском хозяйстве.

Форма подведения итогов: тестирование с самопроверкой.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

No	Название раздела, темы	Формы учебного	Формы, методы, приемы	Материально-	Форма
п/п		занятия	обучения.	техническое	подведения
			Педагогические	оснащение, дидактико-	итогов
			технологии	методический материал	
1			Объяснительно-	Проекционное	Тестирование
	Тема 1. Робототехника в	Variante	иллюстративный.	оборудование, ПК.	
	сельском хозяйстве.	Комбинированная	Частично-поисковый.	Доступ к сети	
			Исследовательский.	Интернет.	
2	Тема 2. Простые		Объяснительно-	Проекционное	Тестирование
	механизмы и их	Variante	иллюстративный.	оборудование, ПК.	
	применение в сельском	Комбинированная	Частично-поисковый.	Доступ к сети	
	хозяйстве.		Исследовательский.	Интернет.	
3	Тема 3. 3D		Объяснительно-	Проекционное	Изготовление
		Variante	иллюстративный.	оборудование, ПК.	прототипа
	моделирование.	Комбинированная	Частично-поисковый.	Доступ к сети	
	Прототипирование.		Исследовательский.	Интернет.	
4	Тема 4. Моделирование и		Объяснительно-	Проекционное	Тестирование
	программирование	IV as affirmed an assess of	иллюстративный.	оборудование, ПК.	_
	беспилотного наземного	Комбинированная	Частично-поисковый.	Доступ к сети	
	транспорта.		Исследовательский.	Интернет.	
5			Объяснительно-	Проекционное	Пилотирование
	Taka 5 Armakarrany	Variante	иллюстративный.	оборудование, ПК.	
	Тема 5. Агрокоптеры.	Комбинированная	Частично-поисковый.	Доступ к сети	
			Исследовательский.	Интернет.	
6	Тема 6. Агроботы.	Комбинированная	Объяснительно-	Проекционное	Соревнования

			иллюстративный. Частично-поисковый. Исследовательский.	оборудование, ПК. Доступ к сети Интернет.	
7	Тема 7. Преобразование и накопление энергии.	Комбинированная	Объяснительно- иллюстративный. Частично-поисковый. Исследовательский.	Проекционное оборудование, ПК. Доступ к сети Интернет.	Практическая работа
8	Тема 8. Роботы на производстве.	Комбинированная	Объяснительно- иллюстративный. Частично-поисковый. Исследовательский.	Проекционное оборудование, ПК. Доступ к сети Интернет.	Тестирование
9	Тема 9. Основы проектной деятельности.	Комбинированная	Объяснительно- иллюстративный. Частично-поисковый. Исследовательский.	Проекционное оборудование, ПК. Доступ к сети Интернет.	Командная защита проектов
10	Тема 10. Хакатон технического творчества.	Комбинированная	Объяснительно- иллюстративный. Частично-поисковый. Исследовательский.	Проекционное оборудование, ПК. Доступ к сети Интернет.	Командная защита проектов

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

В процессе обучения проводятся разные виды контроля результативности усвоения программного материала.

1) Входной контроль

Входной контроль проводится целью выявления первоначального уровня знаний и умений, возможностей обучающихся. Входной контроль проводится с каждым обучающимся индивидуально по следующим параметрам — теоретическим и практическим.

Формы: тестирование и проектная деятельность. Отборочный тест проводится в рамках дистанционного учебно-отборочного курса с целью отбора участников очной профильной смены.

- 1. Отборочный тест состоит из 15 заданий разного уровня сложности по направлению «Робототехнические системы в сельском хозяйстве», направлен на проверку основных понятий, рассматриваемых тем.
- 2. Разработка творческого проекта с целью определения уровня умений и навыков самостоятельной работы, критического мышления и творческого подхода обучающихся на основе имеющихся знаний.

Во время проведения входной диагностики педагог заполняет информационную карточки «Результаты входной диагностики», пользуясь шкалой «Оценка параметров входного контроля».

Оценка параметров входного контроля

Наименование уровня	Результат диагностики, %
Элементарный уровень	0 - 54%
Низкий уровень	55 - 69%
Средний уровень	70 - 84%
Высокий уровень	85 - 100%

Примерные задания:

- 1. Что является основной целью использования сельскохозяйственной робототехники?
 - а) Повышение производительности труда.
 - б) Улучшение качества продукции.
 - в) Снижение затрат на производство.
 - г) Всё вышеперечисленное.
- 2. Какие типы роботов используются в сельском хозяйстве?
 - а) Косилки и уборочные машины.

- б) Доильные роботы.
- в) Овощеуборочные роботы.
- г) Все вышеперечисленные.
- 3. Как называется технология, позволяющая роботам самостоятельно перемещаться по полю и выполнять различные задачи?
 - а) GPS-навигация.
 - б) Глонасс-навигация.
 - в) RTK-навигация.
 - г) Всё вышеперечисленное.
- 4. Какие датчики используются в сельскохозяйственных роботах для определения положения и ориентации на поле?
 - а) GPS-приёмники.
 - б) Датчики расстояния и угла поворота.
 - в) Лазерные сканеры.
 - г) Всё вышеперечисленное.
- 5. Какие задачи выполняют роботы-косилки в сельском хозяйстве?
 - а) Скашивание травы и сорняков.
 - б) Сбор урожая зерновых культур.
 - в) Овощеводство.
 - г) Всё вышеперечисленное.
- 6. Какие преимущества даёт использование сельскохозяйственных роботов?
 - а) Повышение эффективности работы.
 - б) Сокращение затрат на рабочую силу.
 - в) Улучшение качества продукции.
 - г) Всё вышеперечисленное.
- 7. Какие основные компоненты входят в состав роботизированной системы для доения коров?
 - а) Робот-дояр и система управления.
 - б) Доильный аппарат и молокопровод.
 - в) Компьютер и программное обеспечение.
 - г) Всё вышеперечисленное.
- 8. Какие задачи выполняют роботы-сборщики овощей в сельском хозяйстве?
 - а) Сбор томатов и огурцов.
 - б) Сбор клубники и малины.
 - в) Сбор картофеля и капусты.
 - г) Всё вышеперечисленное.

- 9. Какие технологии используются для автоматизации процесса сбора овощей с помощью роботов?
 - а) Искусственный интеллект и машинное зрение.
 - б) Робототехника и сенсоры.
 - в) GPS-навигация и RTK-технология.
 - г) Всё вышеперечисленное.
- 10. Какие перспективы развития сельскохозяйственной робототехники можно выделить?
 - а) Расширение применения роботов в различных отраслях сельского хозяйства.
 - б) Разработка более эффективных и автономных роботов.
 - в) Интеграция робототехнических систем с другими технологиями, такими как IoT и AI.
 - г) Всё вышеперечисленное.
- 2) Текущий контроль проводится в рамках очной профильной смены на занятиях в виде наблюдения за успехами каждого обучающегося, процессом формирования компетенций. Текущий контроль успеваемости служит для определения педагогических приемов и методов для индивидуального подхода к каждому обучающемуся, корректировки плана работы с группой.

Формы:

- устные и письменные работы;
- индивидуальный опрос.

Практические задания, домашние работы, учащиеся выполняют в форме устной или письменной речи. Оценка основывается на ясности выражения мыслей и использовании предметных знаний.

Текущий контроль успеваемости служит для определения педагогических приемов и методов для индивидуального подхода к каждому обучающемуся, корректировки плана работы с группой. Осуществляется в форме наблюдения, тестирования, контрольного опроса (устного или письменного), собеседования, психологического мониторинга.

Варианты примерных заданий.

- 1. Опишите основные компоненты и принцип работы робота-косилки.
- 2. Объясните, как работает система навигации и ориентации сельскохозяйственного робота на поле.
- 3. Перечислите основные задачи, которые могут выполнять роботы-сборщики овощей в сельском хозяйстве.
- 4. Расскажите о принципах работы доильного робота и его компонентах.
- 5. Опишите, какие технологии используются для автоматизации процесса сбора овощей с помощью роботов.

- 6. Соревнования роботов-косилок: участники должны создать робота, способного косить траву на заданной территории. Побеждает робот, который быстрее и эффективнее выполнит задание.
- 7. Соревнования роботов-уборщиков: участники создают робота, способного собирать урожай с растений, например, собирать яблоки или помидоры. Побеждает робот, который соберёт больше урожая за определённое время.
- 8. Соревнования роботов-опрыскивателей: участники создают робота, способного автоматически опрыскивать растения на заданной территории. Побеждает робот, который равномерно и эффективно обработает растения.
- 9. Соревнования роботов-поливальщиков: участники создают робота, способного поливать растения на заданной территории. Побеждает робот, который использует наименьшее количество воды для полива и обеспечивает равномерное увлажнение почвы.
- 10.Соревнования роботов-сеятелей: участники создают робота, способного сеять семена на заданной территории. Побеждает робот, который равномерно и эффективно засевает почву.
 - 3) Промежуточная аттестация. Проводится в форме теста с самопроверкой.
 - 4) Итоговая аттестация. Завершает второй модуль, проводится в виде индивидуального итогового тестирования и создание творческого проекта.

Формы отслеживания результатов: наблюдение, тестирование, контрольный опрос (устный или письменный), психологический мониторинг.

Формы фиксации результатов: аналитическая справка, оценочные материалы, результаты психологического мониторинга, отчёт.

Документальной формой подтверждения итогов реализации отдельного курса программы является документ об обучении «Сертификат» (без оценки) установленного Центром «Поиск» образца.

КАДРОВОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

Обеспечение реализации программы, нацеленной на предоставление высокого качества обучения, планируется за счет штата, состоящего из высококвалифицированных специалистов, обладающих определенными компетенциями и выполняющими определенный функционал. Из них:

- учитель информатики высшей квалификационной категории 2 чел.;
- педагог-психолог высшей квалификационной категории 1 чел.;
- педагог-организатор высшей квалификационной категории 1 чел.

МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ПРОГРАММЕ

Требования к зданию/помещению

Для реализации программы помещение должно удовлетворять строительным, санитарным и противопожарным нормам.

Учебные кабинеты укомплектованы удобными рабочими местами за ученическими столами в соответствии с ростом обучающихся, состоянием их зрения и слуха.

Кабинеты информатики оборудованы в соответствии с гигиеническими требованиями, предъявляемыми к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работы с ними. Используемые цифровые образовательные ресурсы, инструменты учебной деятельности (программные средства) лицензированы для использования во всём учреждении или на необходимом количестве рабочих мест. В работе используются комплекты лицензионного или свободно распространяемого программного обеспечения.

В целях организации антитеррористической защищённости охрана здания учреждения должна быть обеспечена системой наружного видеонаблюдения, пропускным режимом и штатными охранниками. Территория учреждения должна иметь периметральное ограждение и наружное освещение в темное время суток.

Учебно-методическое и информационное обеспечение программы

Аудитории:

- аудитория для теоретических занятий с необходимой ученической мебелью, пластиковой доской;
- компьютерный класс на 12 ученических и 1 учительское место;
- коворкинг-зона.

Технические средства и оборудование:

- проекционное оборудование;

- персональные компьютеры с выходом в сеть интернет и необходимым для стандартного функционирования программным обеспечением;
- обучающие и демонстрационные файлы;
- черно-белый лазерный принтер;
- белая бумага для стандартной печати формата A4;
- маркеры для пластиковой доски;
- сплитсистема.

Лицензионное программное обеспечение:

- Операционная система Linux;
- Среда разработки Visual Studio Code;
- Офисный пакет LibreOffice.

Средства защиты:

- антибактериальные салфетки;
- антибактериальный спрей;
- огнетушитель;
- рециркулятор.

УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

- 1. Перечень литературы, необходимой для освоения программы:
- 1.1. Перечень литературы, использованной при написании программы:
- 1. «Основы робототехники в сельском хозяйстве» под редакцией В. Ф. Мещерякова.
- 2. «Интеллектуальные сельскохозяйственные роботы», авторы Вячеслав Абросимов и Александр Райков. Год издания: 2022. Количество страниц: 512.
- 3. «Автоматизация моделирования промышленных роботов» / В. М. Дмитриев, Л. А. Арайс, А. В. Шутенков, 1995г. 299 с.
- 4. «Робототехнические системы и комплексы»: И. И. Мачульского, 1999 446 с.
- 5. «Основы робототехники» Е. И. Юревич 2-е, 2005 401 с.
- 6. «Цифровые технологии, автоматизированные системы и роботы в животноводстве» Трухачев В. И., Атанов И. В., Капустин И. В., Грицай Д. И, 2023, 104 с.
- 7. «Роботизация урожая: Интеллектуальные системы сбора и обработки сельхозпродукции. Монография» Алексей Грачов, 2024 100с.
- 8. «Роботы в сельском хозяйстве.» Змушко А.А. 2023; 35
- 9. «Робототехника в образовании». Автор: Владислав Халамов (стр.25). Москва, 2013г.
- 10. Бхаргава Адитья. Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих. СПб.: Питер, 2019
- 11. Шапиро И.М. Использование задач с практическим содержанием: Кн. для учителя. М.: Просвещение, 2019. 96 с.
- 12. «Робототехника в сельском хозяйстве» И. А. Кравцова.
- 13. «Агророботы: применение в сельском хозяйстве» Н. В. Лисовского.
- 14. «Программирование и управление агророботами» Д. В. Семёновой.
- 15. «Робототехника для сельского хозяйства» Е. И. Сергеевой.
- 16. «Введение в агропромышленную робототехнику» В. М. Медунецкого.
- 17. «Основы агропромышленной робототехники» И. А. Кравцова.
- 18. «Мехатроника и робототехника в сельском хозяйстве» В. Ф. Мещерякова.
- 19. «Роботы в сельском хозяйстве: применение и перспективы» Н. В. Лисовского.
- 20. «Практический курс по робототехнике в сельском хозяйстве» Д. В. Семёновой.

1.2. Перечень литературы, рекомендованной обучающимся:

21. Соревновательная робототехника: приемы программирования в среде EV3, учебно- практическое пособие. Авторы: Вязовов С.М, Калягина О.Ю., Слезин К.А., Москва, 2014г.

- 22. Киселев М.М., Киселев М.М. Робототехника в примерах и задачах. Москва: Солон-Пресс, 2017.
- 23. Овощеводство: Методическое пособие / Ю.К. Земскова, Н.А. Баскова, И.С. Беспалова и др. Саратов: Изд-во «КУБиК», 2011. 156 с. ISBN: 978-5-91818-168-3. 3.
- 24. Овощеводство защищенного грунта/ Г.С. Осипова - М., Изд-во Проспект Науки, 2010. — 336 с.: ил. — (Учебники и учебные пособия). ISBN 978-5-903090-45-7
- 25. Теплицы и парники. Строительство и рекомендации по выращиванию овощей, цветов, грибов. Л. М Шульгина. Второе издание, ИЗДАТЕЛЬСТВО КЛУБ СЕМЕЙНОГО ДОСУГА, Харьков, Белгород, 2012.
- 26. Умная теплица на вашем огороде. А. В. Маркин. Издательство: Феникс, 2006 г.

1.3. Перечень литературы, рекомендованной родителям:

- 1. Справочник по овощеводству/Сост. Брызгалов В.А. 2-е изд., перераб. и доп. Л.: Колос, Ленинградское отделение, 1982. 511 с.
- 2. Журналы: «Картофель и овощи», «Приусадебное хозяйство», «Школа грибоводства», «Плодоводство и виноградарство», «Гавриш».
- 3. Кови С. «7 навыков высокоэффективных людей. Мощные инструменты развития личности» Альпина Паблишер, 201
- 4. Ицхак Пинтусевич «Действуй! 10 заповедей успеха» изд. Эксмо 2018 г.

1.4 Перечень раздаточного материала:

1. Тематические презентации.

2. Информационное обеспечение

Программное обеспечение: AGRO RIGHT СИРИУС 26, LibreOffice.

2.1 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения программы:

- 1. Модуль «Робототехника и управление беспилотными авиационными системами». https://docs.geoscan.aero/ru/master/instructions/main_instruction.html
- 2. Роботизация в сельском хозяйстве: новый шаг к устойчивому развитию отрасли https://smartagro.ru/robotizatsiya-v-selskom-khozyaystve
- 3. Сельскохозяйственное машиностроение при помощи роботов https://crp-robot.ru/sfery-primeneniya/selskohozyaistvennoe-mashinostroenie
- 4. Онлайн курс по HTO Junior 22. ОК «Технологии и креативное программирование». https://stepik.org/course/122628/syllabus

- 5. 12 революционных роботов в сельском хозяйстве https://svoefermerstvo.ru/svoemedia/articles/12-revoljucionnyh-robotov-v-sel-skom-hozjajstve
- 6. Журнал "Овощеводство" http://ovoschevodstvo.com/journal/browse/200910/article/149/
- 7. Овощеводство в России http://www.rusagroweb.ru/zakrytyi-grunt/zashchishchjonnyj-grunt.html
- 8. Овощеводство защищенного грунта http://vegetables.tj/?Zashishennyi_grunt
- 9. Электронная библиотека МГУ -
- 10.<u>http://www.pochva.com/studentu/study/books/index.php?query=&by=author&format_search=d</u>
- 11.Парники и теплицы в приусадебном хозяйстве https://sheba.spb.ru/za/parnikiteplicy-1985.htm
- 12.Павел Траннуа Теплицы без ошибок. С чего начать и как эффективно использовать https://libcat.ru/knigi/domovodstvo/hobbi-i-remesla/27775-pavel-trannua-teplicy-bez-oshibok-s-chego-nachat-i-kak-effektivno-ispolzovat.html