

РЕГИОНАЛЬНЫЙ ЦЕНТР ВЫЯВЛЕНИЯ, ПОДДЕРЖКИ И РАЗВИТИЯ СПОСОБНОСТЕЙ И ТАЛАНТОВ ДЕТЕЙ И МОЛОДЁЖИ СТАВРОПОЛЬСКОГО КРАЯ «СИРИУС 26»

СОГЛАСОВАНО

Экспертным советом регионального центра выявления, поддержки и развития способностей и талантов детей и молодёжи Ставропольского края «Сириус 26», протокол № 1/2025 от 03.02.2025 г.

УТВЕРЖДЕНО

Директором Центра «Поиск»

Томилиной О.А.

приказ № 13/1 от 04.02.2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«ВИРТУАЛЬНАЯ И ДОПОЛНЕННАЯ РЕАЛЬНОСТЬ»

Направленность: техническая

Возраст обучающихся: 13-17 лет

Объем программы: 92 часа

Срок освоения: 2 месяца

Форма обучения: очная

Авторы программы: Дейдименко Алексей Андреевич, педагог

дополнительного образования ЦЦО «ІТ-куб»

Савельева Ольга Александровна, заместитель

заведующего по учебной части ЦЦО «ІТ-куб»

ОГЛАВЛЕНИЕ

	стр.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
РАБОЧАЯ ПРОГРАММА УЧЕБНО-ОТБОРОЧНОГО КУРСА	11
РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА	13
РАБОЧАЯ ПРОГРАММА УЧЕБНО-ТРЕНИНГОВОГО КУРСА	21
ОЦЕНОЧНЫЕ МАТЕРИАЛЫ	23
КАДРОВОЕ ОБЕСПЕЧЕНИЕ	27
ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО	-
ПРОГРАММЕ	28
УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	
ПРОГРАММЫ	29
СПИСОК ЭЛЕКТРОННЫХ ИСТОЧНИКОВ ИНФОРМАЦИИ	32

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа «Виртуальная и дополненная реальность» направленна на развитие интереса к технологиям виртуальной и дополненной реальности, обучение основам программирования и создание собственных проектов в этих областях.

1. Основные характеристики программы

1.1. Направленность программы

Дополнительная общеобразовательная общеразвивающая программа «Виртуальная и дополненная реальность» имеет техническую направленность.

1.2. Адресат программы

Программа адресована обучающимся от 13 до 17 лет.

Программа предназначена для одаренных школьников 8-11 классов, проявляющих повышенный интерес к информатике, математике, технологиям виртуальной и дополненной реальностей.

Возрастная категория обучающихся – разновозрастная.

Необходимы базовые знания по следующим школьным предметам: информатика, математика.

Требуется наличие практической подготовки.

1.3. Актуальность программы

Актуальность данной программы заключается в том, что она составлена с учётом современных потребностей рынка в специалистах в области информационных технологий.

Виртуальная и дополненная реальности — особые технологические направления, тесно связанные с другими. Технологии включена в список ключевых и оказывают существенное влияние на развитие рынков НТИ.

Практически для каждой перспективной позиции «Атласа новых профессий» крайне полезны будут знания из области компьютерного зрения, систем трекинга, 3D моделирования и т.д. Согласно многочисленным исследованиям, VR/AR рынок развивается по экспоненте — необходимы компетентные специалисты.

Данная программа позволяет обучающимся самостоятельно выбрать актуальную проблемную область и создать проект, конечный результат которого будет представлять собой инженерную разработку в области различных направлений.

Педагогическая целесообразность программы состоит в том, что современное информационное общество требует постоянного обновления и расширения профессиональных компетенций. Необходимо улавливать самые перспективные тенденции развития мировой конъюнктуры, шагать в ногу со временем. Обучающиеся смогут применить свои знания, умения и навыки не только при поступлении в образовательные учреждения технической направленности, но и в повседневной жизни.

1.4. Отличительные особенности/новизна программы

Программа разработана с учётом особенностей стека VR/AR-технологий и учитывает большой объём знаний, умений и навыков, которые необходимо сформировать у обучающихся. Для достижения этой цели учебный материал выстроен с применением классической дидактической спирали, учитывающей современные методы и технологии обучения. Кроме того, программа учитывает новые технологические уклады, которые требуют новый способ мышления и тесного взаимодействия при постоянном повышении уровня междисциплинарной связи проектов.

дополнительное общеобразовательной Введение образование В общеразвивающей программы «Виртуальная и дополненная реальность» использует такие методы, как: командная работа, поиск проблем и их практическое решение, анализ обобщение опыта, И исследовательских и инженерно-технических проектов и их защита. Это неизбежно изменит картину восприятия учащимися технических дисциплин, переводя их из разряда умозрительных в разряд прикладных.

Уровень освоения программы — углубленный.

1.5. Объем и срок освоения программы

Объем программы – 92 часа.

Срок реализации программы – 2 месяца.

1.6. Цели и задачи программы

Целями программы являются:

- ознакомление учащихся с развивающейся областью VR/AR и его прикладным применением при выполнении проектных работ;
- формирование навыков разработки программного обеспечения, использующего стек технологий VR/AR;
 - привлечение к исследовательской и изобретательской деятельности;
 - формирование мотивации к занятиям техническим творчеством.

Задачи программы

1. Обучающие:

- погрузить обучающихся в проектную деятельность для формирования навыков ведения проекта;
 - познакомить с понятиями виртуальной и дополненной реальности;
- определить факторы, влияющие качество погружения в виртуальный мир
- изучить возможности различных VR устройств и устройств, применяемых для дополненной реальности;
 - познакомить с базовыми технологиями, являющимися фундаментом

VR/AR стека;

- изучить способы и инструменты 3D моделирования;
- изучить базовые программные платформы для работы с VR/AR;
- изучить способы создания логики поведения объектов виртуального мира с помощью программирования;
- экспериментальным путем научить определять понятия дополненной и смешанной реальности, их отличия от виртуальной реальности;
 - определить ключевые понятия оптического трекинга;
- научить создавать VR-приложения нескольких уровней сложности под различные устройства;
- научить создавать AR-приложения нескольких уровней сложности под различные устройства.

2. Развивающие:

Обучающиеся в процессе изучения образовательной программы получат возможность:

- способствовать развитию творческих способностей учащихся, познавательных интересов, развитию индивидуальности и самореализации;
- расширять технологические навыки при подготовке различных информационных материалов;
- развивать познавательные способности ребенка, память, внимание, пространственное мышление, аккуратность и изобретательность при работе с техническими устройствами, создании электронных устройств и выполнении учебных проектов;
 - формировать творческий подход к поставленной задаче;
- развивать навыки инженерного мышления, умения работать как по предложенным инструкциям, так и находить свои собственные пути решения поставленных задач;
- развивать навыки эффективной деятельности в проекте, успешной работы в команде;
 - развивать стрессоустойчивость;
 - развивать способности к самоанализу, самопознанию;
 - формировать навыки рефлексивной деятельности.

3. Воспитательные:

В процессе изучения образовательной программы, обучающиеся смогут:

- воспитать мотивацию учащихся к изобретательству, созданию собственных программных реализаций;
- привить стремление к получению качественного законченного результата в проектной деятельности;
- привить информационную культуру: ответственное отношение к информации с учетом правовых и этических аспектов её распространения, избирательного отношения к полученной информации;
- формировать правильное восприятие системы ценностей, принципов, правил информационного общества;

- формировать потребность в самостоятельном приобретении и применении знаний, потребность к постоянному саморазвитию;
- воспитывать социально-значимые качества личности человека: ответственность, коммуникабельность, добросовестность, взаимопомощь, доброжелательность.

1.7. Планируемые результаты освоения программы

- 1. Предметные результаты:
- умение разрабатывать и программировать виртуальную и дополненную реальность с использованием соответствующих инструментов и технологий.
 - навык создания интерактивных сред в VR/AR приложениях.
- понимание основных принципов визуализации и моделирования объектов в виртуальной и дополненной реальности.
- умение оптимизировать и улучшать производительность VR/AR приложений.

2. Метапредметные результаты:

- развитие навыков анализа и решения проблем с использованием программирования и разработки VR/AR приложений.
- усиление умения работать в команде и совместно решать задачи в рамках проектов VR/AR.
- развитие критического мышления при оценке эффективности и качества разработанных приложений.
- повышение информационной грамотности в области виртуальной и дополненной реальности.

3. Личностные результаты:

- формирование творческого подхода к разработке VR/AR приложений и раскрытие индивидуального потенциала.
- развитие уверенности в своих способностях и компетенциях в области VR/AR разработки.
- укрепление самостоятельности и ответственности за результаты своей работы в сфере VR/AR технологий.
- стимулирование интереса к новым технологиям и исследованиям в области виртуальной и дополненной реальности.

2. Организационно-педагогические условия реализации программы

2.1. Язык реализации программы

Реализация дополнительной общеобразовательной общеразвивающей программы «Виртуальная и дополненная реальность» осуществляется на государственном языке Российской Федерации. (на русском языке)

2.2. Форма обучения: очная с применением дистанционных образовательных технологий.

2.3. Особенности реализации программы

Программа реализуется по модульному принципу с использованием дистанционных образовательных технологий.

- 1 модуль дистанционный учебно-отборочный курс в течение 2-х недель;
- 2 модуль очная профильная смена в течение 2-х недель;
- 3 модуль дистанционный учебно-тренинговый курс в течение 3-х недель.

Основная часть содержания программы реализуется в формате очной профильной смены в течение 2-х недель.

При реализации программы используется технология крупноблочной подачи информации и погружения в предмет с последующей самостоятельной проработкой основных вопросов, обозначенных темой программы (учебнотренинговый курс).

Программой предусмотрена система взаимосвязанных занятий, выстроенных в логической последовательности и направленных на активизацию познавательной сферы обучающихся.

Образовательная программа включает в себя лекции, практикумы по решению физических задач (ПРЗ) повышенного и высокого уровня сложности, проведение экспериментальных работ и обработку полученных экспериментальных данных в форме отчётов, выполнение контрольных и тестовых заданий.

Большая часть времени курса будет посвящена практическому освоению основных инструментов Unity и методам решения различных задач, связанных с разработкой приложений.

Программа курса включает интерактивные задания и систему самопроверки, которая поможет учащимся оценить свои знания по каждой изученной теме.

Система оценки знаний учащихся осуществляется по 100 бальной шкале. Участие школьников в программе осуществляется на бюджетной основе.

2.4. Условия набора и формирования групп

Для участия в образовательной программе школьникам необходимо:

- подать заявку на официальном сайте регионального центра «Сириус 26»,
- пройти дистанционный учебно-отборочный курс;
- выполнить задание отборочного курса;
- документально подтвердить высокие достижения в интеллектуальных конкурсах и соревнованиях регионального, всероссийского и международного уровней по направлению программы (если имеются).

На обучение зачисляются учащиеся 8-11 классов образовательных организаций Ставропольского края в соответствии с рейтингом и установленной квотой:

1) подавшие заявку и успешно прошедшие конкурсный отбор;

2) по результатам участия в олимпиадах и других интеллектуальных конкурсах по физике, астрономии, математике регионального и всероссийского уровней начисляются дополнительные баллы.

Условия конкурсного отбора гарантируют соблюдение прав учащихся в области дополнительного образования и обеспечивают зачисление наиболее способных и подготовленных обучающихся к освоению программы.

Условия формирования групп: разновозрастные.

Формируются разновозрастные группы по результатам творческого задания.

2.5. Формы организации и проведения занятий

Формы организации занятий — аудиторные, групповые (под непосредственным руководством преподавателя) и дистанционные (самостоятельная работа при прохождении учебно-отборочного и учебнотренингового курсов, выполнении контрольных заданий).

Формы проведения занятий: комбинированные, теоретические, практические, лабораторные, самостоятельные, контрольные.

Формы организации деятельности обучающихся: фронтальная, групповая, индивидуальная.

Режим занятий:

Очная форма обучения: по 8 уроков в день в течение 10 учебных дней. Программа реализуется в г. Михайловске.

Дистанционная форма обучения: обучающиеся проходят учебноотборочный курс в течение 3-х недель в удобное для обучающегося время, который завершается отборочным тестированием. Учащиеся, участвующие в очной профильной смене по её завершении, проходят в течение 3-х недель учебно-тренинговый курс и получают сертификат об освоении программы установленного образца.

Продолжительность академического часа -40 минут.

Учебное занятие состоит из двух уроков.

УЧЕБНЫЙ ПЛАН

No	Наименование модуля,	Ко	личество ча	Формы контроля	
темы	учебного курса	Теория	Практика	Всего	
1.	Учебно-отборочный курс «Введение в виртуальную и дополненную реальность»	2	4	6	Тестирование
2.	Учебный курс «Виртуальная и дополненная реальность»	16	64	80	Тестирование Контрольная работа Отчет по эксперименту
3.	Учебно-тренинговый курс «Расширенные аспекты разработки приложений виртуальной и дополненной реальности»	2	4	6	Выполнение заданий с самопроверкой
	Итого:	20	72	92	

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Наименование модуля, учебного	Дата	Дата	Кол-во	Кол-во	Кол-во	Режим занятий
курса	начала	окончания	учебных	учебных	учебных часов	
	обучения	обучения	недель	дней		
Учебно-отборочный курс «Введение в	21.04.2025	07.05.2025	2		6	Дистанционное
виртуальную и дополненную						обучение
реальность»						
Учебный курс «Виртуальная и	02.06.2025	14.06.2025	2	10	80	Очное обучение,
						5 раз в неделю по 8
дополненная реальность»						часов
Учебно-тренинговый курс	14.06.2025	06.07.2025	3		6	Дистанционное
«Расширенные аспекты разработки						обучение
приложений виртуальной и						
дополненной реальности»						

РАБОЧАЯ ПРОГРАММА УЧЕБНО-ОТБОРОЧНОГО КУРСА

«Введение в виртуальную и дополненную реальность» 10-11 классы

Курс «Введение в виртуальную и дополненную реальность» систематизирует и обобщает знания обучающихся, полученные в ходе изучения информатики в общеобразовательной школе.

Основное внимание в курсе уделяется овладению базовых принципов разработки VR/AR приложений и применению полученных знаний на практике.

Курс реализуется в дистанционной форме.

В результате освоения учебного курса обучающийся должен:

знать:

- основы работы в Unity и назначение его основных компонентов;
- структуру интерфейса Unity и научатся работать с его основными элементами;
- основы создания и применения материалов, а также в использовании текстур;
- как применять эффекты для создания реалистичных сцен;
- импортировать и использовать 3D-модели в Unity, включая оптимизацию и настройку.

уметь:

- работать с интерфейсом Unity для создания сцен;
- применять материалы и текстуры для придания объектам реалистичного внешнего вида;
- работать с объектом Terrain.
- создавать и использовать префабы для упрощения разработки;
- работать с импортированными 3D-моделями: настраивать их положение, масштаб, текстуры.
- создавать небольшие сцены.

ТЕМАТИЧЕСКИЙ ПЛАН

$N_{\underline{0}}$	Наименование темы,	Количество часов			Формы контроля
темы	учебного курса	Теория	Теория Практика Всего		
	Основы работы в Unity.	1	1	2	Ответы на
1.	Интерфейс и				вопросы
	стандартные объекты.				самоконтроля
	Материалы, текстуры,	0	2	2	Ответы на
2.	префабы, terrain.				вопросы
					самоконтроля
	Работа с внешними	0	2	2	Ответы на
3.	ресурсами и моделями.				вопросы
					самоконтроля
	Итого:	1	5	6	

СОДЕРЖАНИЕ УЧЕБНО-ОТБОРОЧНОГО КУРСА «Введение в виртуальную и дополненную реальность»

Тема. Основы работы в Unity. Интерфейс и стандартные объекты.

Теория: Обзор интерфейса Unity: рабочие окна, панели инструментов, сцена и инспектор. Создание и настройка стандартных объектов (кубы, сферы, капсулы и т. д.). Введение в базовые компоненты физики Unity3D: Rigidbody, Collider и их свойства.

Практика: Создание проекта в Unity. Добавление и настройка стандартных объектов. Применение физических компонентов (гравитация, столкновения, триггеры). Настройка базовых взаимодействий объектов через физику.

Тема. Материалы, текстуры, префабы, terrain.

Практика: Создание материалов и текстур. Применение материалов к объектам. Создание и использование префабов. Работа с Terrain: формирование ландшафта, добавление текстур, деревьев.

Тема. Работа с внешними ресурсами и моделями.

Практика: Импорт сторонних 3D-моделей в проект. Настройка материалов и текстур для моделей. Размещение и использование внешних моделей в сцене. Проверка их работы и взаимодействия с другими объектами.

Основные методы и формы реализации содержания программы:

- наглядные: презентация, видео-демонстрация опытов по электростатике;
- словесные: видео лекции;
- практические: решение задач.

Средства обучения: персональный компьютер с выходом в интернет; образовательная платформа «Геткурс», демонстрационные материалы; дидактические материалы для самостоятельного решения задач.

Форма подведения итогов: выполнение заданий с самопроверкой, творческого задания с развернутым ответом.

РАБОЧАЯ ПРОГРАММА

УЧЕБНОГО КУРСА «Виртуальная и дополненная реальность» 8-11 классы

Курс «Виртуальная и дополненная реальность» предназначен для обучающихся 8-11 классов.

Курс знакомит обучающихся с основами работы в Unity, включая базовые принципы разработки 3D-приложений. Учащиеся познакомятся с интерфейсом Unity, стандартными объектами, материалами, текстурами, префабами и инструментами для работы с моделями. Программа формирует понимание процесса разработки приложений и умение применять полученные знания на практике для создания собственных проектов.

Курс реализуется в очно в формате профильной смены.

В результате освоения учебного курса обучающийся должен: знать:

Основным результатом обучения является формирование у обучающегося навыков проектной деятельности и способности самостоятельно создавать базовые приложения в Unity.

В результате освоения программы обучающийся должен приобрести следующие знания, умения и навыки:

уметь:

- принципы работы игровых движков и критерии создания приложений под различные игровые платформы;
- основные понятия: дополненная реальность (в т.ч. ее отличия от виртуальной), смешанная реальность, оптический трекинг, маркерная и безмаркерная технологии, реперные точки;
- пользовательский интерфейс профильного ПО, базовых объектов инструментария;
 - основы 3D моделирования;
- техники ведения проектной деятельности и принципы таймменеджмента;
 - 1. Уметь:
- создавать приложения в специализированном ПО, таком как Unity 3d/Unreal Engine, SparkAR;
- активировать запуск приложений дополненной реальности на AR очках, устанавливать их на устройство и тестировать;
 - создавать AR приложений;
 - калибровать межзрачковое расстояние;
 - собирать собственное VR устройство;

- высказываться устно в виде сообщения или доклада;
- высказываться устно в виде рецензии ответа товарища;
- представлять одну и ту же информацию различными способами;
- формировать цели, ставить задачи для её достижения в ходе решения проблемных ситуаций;
 - эффективно работать в команде;
 - презентовать себя, свой продукт, свою команду;
 - мыслить творчески, придумывать и воплощать в жизнь свои идеи;
 - 2. Обладать навыками:
- исследовательской, проектной и социальной деятельности, строить логическое доказательство;
- проектирования, разработки, документирования и представления собственных проектов в составе команды;
- самооценивания периодической оценкой своих успехов и собственной работы самими обучающимися;
- коммуникации сотрудничество и работа в команде, успешное распределение ролей;
 - работы с современным технологическим оборудованием.

ТЕМАТИЧЕСКИЙ ПЛАН УЧЕБНОГО КУРСА

«Виртуальная и дополненная реальность»

No	Наименование раздела, темы		Количе	Формы контроля	
	_	Всего	Теория	Практика	
Кейс 1.	. 3D моделирование.				
1.	Тема 1.1. Знакомство с программой для 3D моделирования Blender 3D.	2	1	1	Опрос
1.	Тема 1.2. Освоение базового инструментария. Выдавливание, фаска, разрез петлей.	8	2	6	Практическая работа
2.	Тема 1.3. UV-Развертка, текстурированние, запекание текстур и материалов.	6	2	4	Практическая работа
3.	Тема 1.4. Правила создания игровых объектов.	4	1	3	Опрос
4.	Тема 1.5. Создание GameReady моделей	10	0	10	Практическая работа
5.	Тема 1.6. Экспорт моделей из Blender 3D.	2	1	1	Опрос
Кейс 2.	. Основы создания VR-приложений.				
6.	Тема 2.1. Введение в VR: основные концепции и устройства. Подготовка проекта для работы с VR.	2	1	1	Опрос
7.	Тема 2.2. Знакомство с плагином SteamVR: настройка камеры, контроллеров и навигационной сетки.	6	2	4	
8.	Тема 2.3. Работа с телепортацией. Разбор компонента TeleportArea. Телепортация с учетом ландшафта и навигационной сетки.	5	1	4	
9.	Тема 2.4. Создание интерактивных объектов: взаимодействие с предметами через контроллеры.	5	1	4	
10.	Тема 2.5. Взаимодействие с объектами через скриптинг. Основы работы с коллайдерами, триггерами, событиями.	6	0	6	Практическая работа
11.	Тема 2.6. Разбор простых игровых механник	6	1	5	Опрос
12.	Тема 2.7. Разработка VR	10	2	8	Защита

	приложения. Рефлексия				проекта
Кейс 3	. Основы создания AR-приложений				
13.	Тема 3.1. Введение в AR: обзор технологий и примеры приложений. Подготовка проекта для работы с AR.	2	1	1	Опрос
14.	Тема 3.2. Работа с таргетами. Создание и распознавание маркеров.	2	0	2	
15.	Тема 3.3. Создание простого AR- приложения.	4	0	4	Защита проекта
	Итого:	80	15	65	

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

«Виртуальная и дополненная реальность»

Кейс 1. 3D Моделирование

Тема 1.1. Знакомство с программой для 3D моделирования Blender 3D.

Теория: основные возможности и инструменты программы, включая интерфейс и рабочие области. Принципы работы с 3D-объектами. Навигация в 3D-пространстве. Создание базовых геометрических форм (куб, сфера, цилиндр). Инструменты для трансформации объектов (перемещение, масштабирование, вращение). Модификаторы и материалы.

Практика: создание 3D-объектов. Операции редактирования (выдавливание, вставка, масштабирование, вращение).

Тема 1.2. Освоение базового инструментария. Выдавливание, фаска, разрез петлей.

Теория: основные инструменты для работы с 3D-геометрией: выдавливание, фаска, разрез петлей. Принципы работы с этими инструментами для создания и модификации объектов. Выдавливание (Extrude) для создания объемных объектов. Фаска (Bevel) для сглаживания углов и ребер. Разрез петлей (Loop Cut) для добавления геометрических линий и улучшения детализации модели.

Практика: применение инструментов выдавливания, фаски и разреза петлей для создания и модификации объектов. Изменение формы и геометрии модели с использованием данных инструментов. Создание моделей с детализированными углами и гранями.

Работа 1. Основы 3D-моделирования. Стол

- 1. Создать плоскость для столешницы;
- 2. Добавить ножки через Extrude;
- 3. Применить Bevel для сглаживания углов;
- 4. Использовать LoopCut для добавления декоративных элементов на ножки.

Тема 1.3. UV-Развертка, текстурированние, запекание текстур и материалов.

Теория: основы UV-развёртки: процесс развертывания 3D-объекта на 2D-плоскости для текстурирования. Принципы наложения текстур на модели. Запекание текстур и материалов — процесс сохранения информации о текстурах, освещении и материалах в текстуру. Технологии для улучшения качества и оптимизации моделей для использования в играх и рендеринге.

Практика: создание UV-развёртки для 3D-моделей. Наложение текстур на объекты. Запекание текстур для модели, включая световые карты и карты нормалей. Применение материалов и настройка их свойств для различных объектов.

Работа 2. Создание текстурированного 3D-объекта: от UV-развёртки до запекания материалов

- 1. Создать объект сундука с деталями.
- 2. Развернуть модель.
- 3. Создание материалов.
- 4. Запекание текстур.

Тема 1.4. Правила создания игровых объектов.

Теория: принципы создания игровых объектов: оптимизация геометрии, управление полигонами, использование LOD (уровней детализации) для разных расстояний. Важность правильного масштабирования и пропорций. Принципы построения объектов с учётом игрового движка, ограничения по числу полигонов и текстур.

Практика: создание игровых объектов с учётом требований оптимизации и производительности. Применение LOD для различных уровней детализации моделей. Проверка моделей на соответствие требованиям движка (например, Unity или Unreal Engine).

Tema 1.5. Создание GameReady моделей.

Теория: что такое GameReady модель: оптимизированная модель, готовая для использования в игровом движке. Правила и стандарты для создания GameReady моделей, включая ограничение количества полигонов, текстур, корректное использование материалов. Разработка и подготовка моделей для работы в реальном времени.

Практика: создание GameReady моделей с учетом ограничений по количеству полигонов и текстур. Оптимизация геометрии моделей и подготовка их для экспорта в игровые движки. Проверка моделей на производительность и визуальное качество в игровом движке.

Работа 3. *GameReady модель*

- 1. Создание базовой модели.
- 2. Оптимизация геометрии.
- 3. UV-развертка и текстурирование.
- 4. Настройка и запекание материалов.

Тема 1.6. Экспорт моделей Blender3D.

Теория: принципы экспорта 3D-моделей из Blender в различные форматы (FBX, OBJ, STL и другие). Различия между форматами и их применение для различных целей (игровые движки, 3D-печать, рендеринг). Сохранение текстур и материалов при экспорте.

Практика: экспорт 3D-моделей в различные форматы, подготовка моделей для использования в других приложениях и игровых движках. Экспорт с сохранением текстур, материалов и анимаций. Проверка экспортированных моделей в другом программном обеспечении или игровом движке.

Кейс 2. Основы создания VR-приложений.

Тема 2.1. Введение в VR: основные концепции и устройства. Подготовка проекта для работы с VR.

Теория: основные концепции виртуальной реальности (VR): отличие VR от других технологий, принципы работы VR-устройств. Обзор VR-гарнитур и контроллеров. Основы взаимодействия с VR-устройствами. Требования к проекту для работы в VR. Настройка Unity для разработки VR-приложений.

Практика. Создание нового проекта в Unity с настройкой под VR. Установка необходимых SDK и плагинов (OpenXR, Oculus, SteamVR). Добавление VR-камеры и базового взаимодействия с окружением.

Тема 2.2. Введение в VR: основные концепции и устройства. Подготовка проекта для работы с VR.

Теория. Углублённое изучение устройств VR, их возможностей и ограничений. Принципы работы VR-систем (отслеживание положения, рендеринг, взаимодействие). Подходы к оптимизации производительности VR-приложений.

Практика. Создание сцены с базовыми элементами VR-окружения. Добавление базового взаимодействия с объектами. Тестирование на VR-устройстве.

Тема 2.3. Работа с телепортацией. Разбор компонента TeleportArea. Телепортация с учетом ландшафта и навигационной сетки.

Теория. Принципы передвижения в VR: преимущества и ограничения телепортации. Разбор компонента TeleportArea в Unity. Работа с навигационной сеткой (NavMesh) для обеспечения корректного перемещения по сцене.

Практика. Настройка компонента TeleportArea в Unity. Создание сцены с телепортацией. Настройка ландшафта и добавление навигационной сетки. Реализация телепортации с учетом рельефа.

Тема 2.4. Создание интерактивных объектов: взаимодействие с предметами через контроллеры.

Теория. Принципы взаимодействия в VR: базовые подходы и UX-особенности. Использование компонентов VR Interaction Toolkit. Настройка объектов для взаимодействия через контроллеры (захват, перемещение, вращение).

Практика. Создание интерактивных объектов в Unity. Настройка взаимодействия с помощью контроллеров. Реализация захвата и манипуляции объектами. Тестирование сцены с VR-устройством.

Тема 2.5. Взаимодействие с объектами через скриптинг. Основы работы с коллайдерами, триггерами, событиями.

Практика. Создание объектов с триггерами и коллайдерами. Написание скриптов для управления взаимодействием. Реализация событий при

Работа 4. Взаимодействие с объектами через скриптинг: коллайдеры, триггеры и события.

- 1. Создать простую игровую сцену с несколькими объектами.
- 2. Добавить коллайдеры для всех объектов.
- 3. Настроить триггеры для взаимодействия.
- 4. Написать скрипт для открытия двери при нажатии на кнопку, реализовать событие изменения цвета куба при нажатии кнопки.
- 5. Протестировать работы сцены и проверить взаимодействие всех объектов.

Тема 2.6. Разбор простых игровых механик.

Teopus. Основные игровые механики для VR: сбор предметов, выполнение задач, взаимодействие с окружением. Принципы проектирования пользовательских сценариев для VR.

Практика. Реализация простой игровой механики (например, сбор предметов, открытие дверей). Настройка пользовательских сценариев взаимодействия. Тестирование игровой логики в VR.

Тема 2.7. Разработка VR приложения. Рефлексия.

Теория. Основные этапы создания VR-приложения: проектирование, реализация, тестирование. Принципы оптимизации VR-проектов. Анализ и рефлексия над разработанным приложением.

Практика. Создание небольшого VR-приложения с интерактивными элементами и базовыми игровыми механиками. Тестирование приложения на VR-устройстве. Анализ работы, выявление и исправление ошибок, улучшение функциональности.

Кейс 3. Основы создания AR-приложений.

Тема 3.1. Введение в AR: обзор технологий и примеры приложений. Подготовка проекта для работы с AR.

Теория. Основы дополненной реальности (AR): что такое AR, отличие от VR, примеры применения (образование, медицина, развлечения). Технологии, используемые в AR: маркерный и markerless подходы. Популярные платформы и SDK для создания AR-приложений Vuforia. Требования к устройствам и проекту для работы с AR.

Практика. Установка Unity и необходимого SDK Vuforia. Настройка проекта для работы с AR. Создание базовой сцены с AR-камерой. Тестирование проекта на мобильном устройстве.

Тема 3.2. Работа с таргетами. Создание и распознавание маркеров.

Теория. Принципы работы с маркерами в AR-приложениях. Создание маркеров и их использование для отображения 3D-объектов. Настройка таргетов (Image Targets) для распознавания изображений. Подходы к улучшению качества

распознавания маркеров.

Практика. Создание собственного маркера для AR-приложения. Добавление таргетов в Unity с использованием SDK Vuforia. Настройка сцены для отображения 3D-объектов при распознавании маркера. Тестирование работы с маркерами на устройстве.

Тема 3.3. Создание простого AR-приложения.

Теория. Этапы разработки AR-приложения: проектирование, реализация, тестирование. Использование 3D-объектов и их взаимодействие с реальным миром. Подходы к оптимизации и тестированию AR-приложений на различных устройствах.

Практика. Создание AR-приложения с использованием Unity. Добавление AR-камеры, таргетов и 3D-объектов. Настройка взаимодействия с объектами (например, анимация при нажатии на маркер). Экспорт проекта и тестирование приложения на мобильном устройстве.

Основные методы реализации содержания программы:

Практико-ориентированный подход – выполнение практических заданий на каждом этапе обучения.

Проектный метод — постепенная реализация проекта, охватывающего основные аспекты программы с демонстрацией результата на защите проекта.

Кейс-метод – решение прикладных задач, имитирующих реальные сценарии разработки.

Метод демонстрации и самостоятельной практики — предоставление обучающимся возможности самостоятельно исследовать и применять инструменты на практике с поддержкой педагога.

Форма подведения итогов: Основным критерием освоения программы является активное участие в проектно-исследовательской деятельности в рамках трех кейсов. Программа считается успешно освоенной при условии решения всех кейсов.

РАБОЧАЯ ПРОГРАММА УЧЕБНО-ТРЕНИНГОВОГО КУРСА

«Расширенные аспекты разработки приложений виртуальной и дополненной реальности» 8-11 классы

Курс «Расширенные аспекты разработки приложений виртуальной и дополненной реальности» предназначен для обучающихся 8-11 классов, участников образовательной программы «Виртуальная и дополненная реальность», а также для обучающихся, желающих научиться разработке приложений виртуальной и дополненной реальности.

В курсе «Расширенные аспекты разработки приложений виртуальной и дополненной реальности» рассматриваются наиболее сложные аспекты:

- оптимизация производительности VR/AR приложений.
- создание интерактивных объектов и пользовательских интерфейсов в VR/AR.
- разработка базовых игровых механик и их интеграция в виртуальную реальность.

Курс способствует закреплению алгоритмов и методов проектирования VR/AR-приложений, формированию навыков работы с современными инструментами и решения задач повышенного уровня сложности.

В результате освоения учебного курса обучающийся должен:

знать:

- алгоритмы и методы оптимизации VR/AR приложений;
- принципы создания интерактивных объектов и пользовательских интерфейсов;
 - основные игровые механики, используемые в VR; уметь:
 - применять алгоритмы и методы для оптимизации сцены;
 - разрабатывать интерактивные объекты с триггерами и событиями;
 - создавать пользовательские интерфейсы, адаптированные под VR/AR.

ТЕМАТИЧЕСКИЙ ПЛАН

$N_{\underline{0}}$	Наименование модуля,	Количество часов			Формы контроля
темы	учебного курса	Теория	Практика	Всего	
1.	Оптимизация		2	2	самостоятельная
	производительности VR-				работа с
	приложений.				самопроверкой
2.	Работа с расширенными		2	2	самостоятельная
	интерактивными				работа с
	объектами				самопроверкой
3.	Интеграция		2	2	самостоятельная
	пользовательских				работа с
	интерфейсов в VR/AR				самопроверкой
	·				
	Итого:		6	6	

СОДЕРЖАНИЕ УЧЕБНО-ТРЕНИНГОВОГО КУРСА

«Расширенные аспекты разработки приложений виртуальной и дополненной реальности» 8-11 классы

Теория: Изучение подходов к оптимизации производительности VR/AR-приложений, включая оптимизацию текстур и моделей. Основы создания интерактивных объектов с использованием расширенных функций VR/AR. Принципы интеграции пользовательских интерфейсов в виртуальную и дополненную реальность.

Практика:

- 1. Оптимизация сцены VR-приложения (уменьшение нагрузки на графический процессор, использование low-poly моделей).
- 2. Создание интерактивного объекта с использованием триггеров и событий.
- 3. Разработка базового интерфейса для управления в VR/AR (меню, кнопки, панели).

Основные методы и формы реализации содержания программы: словесные (лекция), наглядные (презентация), практические.

По уровню деятельности обучающихся — объяснительно-иллюстративные (видео), репродуктивные (выполнение заданий по образцу).

Средства обучения: персональный компьютер с выходом в интернет; демонстрационные материалы; обучающие и демонстрационные файлы.

Форма подведения итогов: самостоятельная работа с самопроверкой.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Контроль и оценка результатов освоения образовательной программы «Виртуальная и дополненная реальность» осуществляется преподавателем в процессе проведения практических и лекционных занятий.

Оценивание результативности деятельности обучающихся направлено на анализ освоения обучающимися содержания программы.

Оценка уровня усвоения содержания образовательной программы проводится по следующим показателям:

- степень усвоения содержания;
- степень применения знаний на практике;
- умение анализировать и делать выводы.

Обучающимся за время обучения в учебно-отборочном и учебнотренинговом курсах предлагается выполнить определенный набор заданий: изучить теорию по теме, выполнить задания (тесты, вопросы самоконтроля) для проверки степени усвоения теоретического материала, рассмотреть примеры решения и оформления физических задач, решить самостоятельно несколько задач по образцу.

При самопроверке заданий на всех этапах курса обращается внимание на следующие аспекты:

- 1) понимание сути задания, его цели и контекста применения результата;
- 2) рациональное использование инструментов и методов, выборов наиболее эффективных способов выполнения задачи;
- 3) достижение качественного результата с учетом поставленных требований, включая оптимизацию и соблюдение технических ограничений;
- 4) умение довести задачу до завершенного результата, проверяя корректность всех этапов работы, включая материалы, текстуры и экспорт, с учетом стандартов и требований целевого проекта.

Освоение обучающимися содержания дополнительной общеобразовательной общеразвивающей программы «Виртуальная и дополненная реальность» проводится с помощью следующих форм контроля: входной, промежуточный, итоговый.

Входной контроль

Входной контроль проводится в форме выполнения творческого задания, предназначенного для определения уровня подготовки обучающихся к освоению программы курса «Виртуальная и дополненная реальность».

Цель входного контроля — выявить первоначальный уровень знаний и умений, необходимых для успешного прохождения курса, а также оценить способности обучающегося в работе с игровыми движками.

Входной контроль проводится дистанционно в форме, после прохождения учебно-отборочного курса с выполнением творческого задания по теме образовательной программы.

Формат выполнения: Задание выполняется индивидуально. Использование сторонних материалов (моделей, текстур, ассетов) разрешено, при условии их корректного применения и соответствия тематики проекта.

24

Проект создается в игровом движке Unity и должен быть представлен в виде сцены с сохраненной структурой проекта. Финальный результат загружается в виде проекта Unity или *.exe файла.

Критерии оценивания творческого задания:

Функциональность (от 0 до 30 баллов):

- 30 баллов: проект содержит интерактивные элементы (управление персонажем, взаимодействие с объектами), которые работают корректно;
- 15 баллов: интерактивность реализована, но содержит незначительные ошибки;
- 5 баллов: интерактивные элементы присутствуют, но работают с большими проблемами;
 - 0 баллов: интерактивные элементы отсутствуют.

Креативность (от 0 до 20 баллов):

- 20 баллов: оригинальная идея, проект проработан до мелочей, продуманная концепция или сюжет;
 - 10 баллов: идея стандартная, но проект завершён;
 - 5 баллов: идея простая, проект не полностью завершён;
 - 0 баллов: проект шаблонный и незаконченный.

Применение материалов и текстур (от 0 до 20 баллов):

- 20 баллов: материалы и текстуры применены ко всем объектам сцены, настройки проработаны (цвет, отражение, прозрачность);
 - 10 баллов: материалы применены частично или на базовом уровне;
 - 5 баллов: материалы используются только на некоторых объектах;
 - 0 баллов: материалы и текстуры отсутствуют.

Работа с префабами (от 0 до 20 баллов):

- 20 баллов: созданы собственные префабы или корректно используются готовые;
- 10 баллов: префабы созданы, но их использование ограничено или некорректно.
 - 5 баллов: префабы есть, но их мало (1-2).
 - 0 баллов: префабы не созданы и не используются.

Чистота проекта (от 0 до 20 баллов):

- 10 баллов: проект структурирован, файлы упорядочены по папкам (Models, Materials, Scripts и т. д.), названия понятны;
- 5 баллов: структура частично организована, но присутствует путаница в названиях;
- 0 баллов: проект не структурирован, файлы и объекты имеют хаотичные названия.

По итогам выполнения творческого задания составляется рейтинговая таблица, которая используется для принятия решения о зачислении обучающегося на основную программу.

Оценка знаний осуществляется по 100-балльной шкале.

Наименование уровня/оценка	Результат диагностики, %
	(кол-во заданий)
Элементарный	0 – 49 % (0-49 баллов)
уровень/неудовлетворительно	
Низкий уровень/удовлетворительно	50 – 69 % (50-69 баллов)
Средний уровень/хорошо	70 – 84 % (70-84 баллов)
Высокий уровень/отлично	85 – 100 % (85-100 баллов)

Текущий контроль проводится на занятиях в течение всего курса и позволяет оценивать уровень освоения материала и выполнение практических заданий.

Формы:

- педагогическое наблюдение за процессом выполнения заданий, включая качество работы с Unity и 3D-инструментами;
- устный опрос, направленный на проверку теоретических знаний, таких как использование базовых инструментов Unity, 3D-моделирования, развертки UV, применения материалов и текстур;
- проверка выполнения практических заданий, включая разбор моделей, настройку префабов и функциональность интерактивных элементов.

Итоговый контроль проводится в завершении курса в форме выполнения творческого задания в Unity. Задание охватывает основные темы курса и проверяет как теоретические знания, так и практические навыки.

Формы проведения: итоговая защита проекта.

Итоговая защита проекта проводится с использованием компьютера.

Проект защищается посредством презентации и демонстрации работы. Необходимо предоставить видео, в котором показан процесс работы и функциональные элементы проекта. Рабочего прототипа, который можно продемонстрировать и взаимодействовать с ним непосредственно. Во время защиты обучающийся объясняет используемые инструменты, решения и функциональность проекта, а также отвечает на вопросы комиссии.

Критерии оценивания итогового проекта:

Актуальность (от 0 до 2 баллов):

- 2 балла: проект полностью соответствует заданной теме, проект направлен на решение поставленных задач;
- 1 балл: проект соответствует выбранному треку, но задачу решает лишь частично.
 - 0 баллов: тематика проекта отличается от выбранного трека.

Качество 3D моделей (от 0 до 3 баллов):

- 3 балла: все модели созданы самостоятельно, оптимизированы (модели имеют адекватное количество полигонов, ровную сетку), имеют текстуры и/или анимацию;
- 2 балла: все модели созданы самостоятельно, модели низкого качества (без элементарных текстур, имеются артефакты на поверхности, плохо

проработаны важные детали).

- 1 балл: более 50% моделей являются заимствованными
- 0 баллов: самостоятельно созданных моделей в проекте нет.

Качество приложения (от 0 до 3 баллов):

- 3 балла: есть рабочий прототип готовый к внедрению, механики разнообразны и реализованы в полном объеме;
- 2 балла: прототип есть, реализовано большинство механик, выполняющих поставленную задачу; может требовать лишь незначительной доработки;
- 1 балл: прототип есть, но основные механики виртуальной/дополненной реальности не реализованы;
 - 0 баллов: отсутствует прототип.

Презентация проекта (от 0 до 2 баллов):

- 2 балла: ясная логика и структура подачи материала, убедительное отстаивание идей и подходов;
- 1 балла: структура материала и логика подачи нуждается в доработке, отдельные идеи объясняются хорошо
 - 0 баллов: нет чёткой структуры представления материала.

Формы фиксации результатов: составляется единая сводная рейтинговая таблица, где учитываются: успеваемость по практическим заданиям, результаты защиты проекта.

Итоговой оценкой является среднее арифметическое значение всех контрольных показателей.

Документальной формой подтверждения участия обучающегося в дополнительной общеобразовательной общеразвивающей программы и её освоения с прохождением учебно-тренингового курса является документ об обучении «Сертификат» (без оценки) установленного региональным центром «Сириус 26» образца.

КАДРОВОЕ ОБЕСПЕЧЕНИЕ

Преподавание данной программы могут осуществлять педагогические работники, владеющие набором профессиональных навыков в области информационно-коммуникационных технологий, при наличии необходимых компетенций и уровня профильной подготовки.

Для реализации дополнительной общеобразовательной общеразвивающей программы необходимы высококвалифицированные специалисты:

- педагог дополнительного образования по направлению «Разработка VR/AR приложений» для проведения лекционных и практических занятий 1-2 чел.
- педагог-психолог 1 чел.;
- руководитель программы 1 чел.

ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ПРОГРАММЕ

Требования к зданию/помещению

Для реализации образовательной программы «Виртуальная и дополненная реальность» требуется наличие учебных кабинетов, которые удовлетворяют строительным, санитарным и противопожарным нормам.

Учебные кабинеты укомплектованы удобными рабочими местами за ученическими столами в соответствии с возрастом обучающихся.

В целях организации антитеррористической защищённости охрана здания учреждения обеспечена системой наружного видеонаблюдения, пропускным режимом и штатными охранниками. Территория учреждения имеет периметральное ограждение и наружное освещение в тёмное время суток.

Материально-техническое обеспечение

Кабинеты:

- кабинет для теоретических занятий с необходимой ученической мебелью на 11 ученических мест, 1 учительское место, пластиковая доской, маркеры, интерактивная доска, проектором и ноутбуком;
 - коворкинг-зона.

Технические средства и оборудование:

- ноутбуки
- проекционное оборудование;
- интерактивная доска;
- белая бумага для стандартной печати формата А4;
- маркеры для пластиковой доски;
- сплитсистема;

МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

Раздел, тема	Форма занятия	Приёмы и методы	Дидактическийматериал.	Техническое	
		организации	Электронные	оснащение	Форма
		образовательного	источники		подве-
		процесса			дения
					ИТОГОВ
Кейс 1. 3D	_	1. Информационно-	1. 3D Computer Graphics" - Alan Watt, 2000 год, 396	1. Персональный	
моделирование.	•	μ '	c.	компьютер;	Опрос.
		2. Репродуктивный	<u> </u>		
		;		оборудование;	
		3. Проблемное	3. Курсы по 3D моделированию на Pluralsight	3. Доступ к сети;	
		изложение;	(https://www.pluralsight.com/paths/3d-modeling).	4. Интернет.	
		4. Частично-			
		поисковый;			
		5. Дистанционный.			
Кейс 2. Основы	Комбинированная	1. Информационно-	1. "Virtual Reality Insider: Guidebook for the VR	1. Персональный	
создания VR-			Industry" - Sky Nite, 2016 год, 200 с.	компьютер;	Защита
приложений.		2. Репродуктивный	2. "Augmented Reality: Principles and Practice" -	2. Проекционное	проекта.
		;	Dieter Schmalstieg, Tobias Hollerer, 2016 год, 552 с.	оборудование;	
		3. Проблемное	3. "Virtual Reality (VR) Development for Beginners"	3. Доступ к сети;	
		изложение;	(https://www.udemy.com/course/virtual-reality-vr-	4. Интернет.	
		4. Частично-	development-for-beginners/)		
		поисковый;			
		5. Дистанционный.			

Кейс 3. Основы	Комбинированная	1. Информационно-	"Augmented Reality for Developers" - Jonathan	1. Персональный	
создания AR-		рецептивный;	Linowes, 2017 год, 400 с.	компьютер;	Защита
приложений.		2. Репродуктивный	2. Курсы по разработке VR и AR на Coursera	2. Проекционное	проекта.
		•	(https://www.coursera.org/courses?query=virtual%20reality)	оборудование;	_
		3. Проблемное		3. Доступ к сети;	
		изложение;		4. Интернет.	
		4. Частично-			
		поисковый;			
		5. Дистанционный.			

СПИСОК ЛИТЕРАТУРЫ

Список литературы, использованной при написании программы

- 1. Бархударов, Валерий В. "Математика для детей и родителей: системы координат". 2007 год.
 - 2. Watt, Alan. "3D Computer Graphics". 2000 год.
 - 3. Blackman, Sue. "3D Game Development with Unity". 2011 год.
 - 4. Gumster, Jason van. "Blender for Dummies". 2015 год.
 - 5. Demers, Owen. "Digital Texturing and Painting". 2002 год.
 - 6. Hocking, Joseph. "Unity in Action". 2015 год.
 - 7. Linowes, Jonathan. "Augmented Reality for Developers". 2017 год.
- 8. Nite, Sky. "Virtual Reality Insider: Guidebook for the VR Industry". 2016 год.
- 9. Schmalstieg, Dieter, Hollerer, Tobias. "Augmented Reality: Principles and Practice". 2016 год.

Список литературы, рекомендованной обучающимся

- 1. "3D Game Development with Unity" Sue Blackman. 2011 год.
- 2. "Blender for Dummies" Jason van Gumster. 2015 год.
- 3. "Unity in Action" Joseph Hocking. 2015 год.
- 4. "Augmented Reality for Developers" Jonathan Linowes. 2017 год.
- 5. "Virtual Reality Insider: Guidebook for the VR Industry" Sky Nite. 2016 год, "Augmented Reality: Principles and Practice" Dieter Schmalstieg, Tobias Hollerer. 2016 год.
- 6. "Digital Texturing and Painting" Owen Demers. 2002 год, 368 страниц
- 7. "Математика для детей и родителей: системы координат" Валерий В. Бархударов. 2007 год.

Список литературы, рекомендованной родителям

- 1. Щебланова, Е. И. Неуспешные одаренные школьники, Е. И. Щебланова. Москва: БИНОМ. Лаборатория знаний, 2011. 245 с.
- 2. Ричард Темплар. Правила самоорганизации: как всё успевать, не напрягаясь, Альпина Паблишер, 2013 г.
- 3. Зеленина, Е. Б. (кандидат педагогических наук; зам. директора; Краевая школа-интернат для одаренных детей, г. Владивосток). Одаренный ребенок: как его воспитывать и обучать? Елена Борисовна Зеленина [Текст] // Народное образование. 2010. № 8. С. 201—206.
- 4. Дымарская О.Я., Мойсов В.В., Базина О.А., Новикова Е.М. Одаренные дети: факторы профессионального самоопределения Психологическая наука и образование. 2012. №3. С.10-20. URL:www.psyedu.ru

СПИСОК ЭЛЕКТРОННЫХ ИСТОЧНИКОВ ИНФОРМАЦИИ

- 1. Онлайн-курсы и обучающие платформы:
- Coursera (<u>https://www.coursera.org/</u>)
- Udemy (https://www.udemy.com/)
- Pluralsight (https://www.pluralsight.com/)
- LinkedIn Learning (https://www.linkedin.com/learning/)
- 2. Официальная документация и ресурсы:
- Официальный сайт Unity (https://unity.com/)
- Официальный сайт Blender (<u>https://www.blender.org/</u>)
- Официальная документация по разработке для Android (https://developer.android.com/)
- Официальная документация по разработке для iOS(https://developer.apple.com/)
 - 3. Видеоуроки и каналы на YouTube:
 - Brackeys (<u>https://www.youtube.com/user/Brackeys</u>)
 - Blender Guru (https://www.youtube.com/user/AndrewPPrice)
 - Sebastian Lague (https://www.youtube.com/user/Cercopithecan)
 - Unity Learn (https://www.youtube.com/user/Unity3D)
 - 4. Блоги и онлайн-ресурсы:
 - Medium (<u>https://medium.com/</u>)
 - Towards Data Science (https://towardsdatascience.com/)
 - VRScout (https://vrscout.com/)
 - ARPost (<u>https://arpost.co/</u>)
 - 5. Специализированные ресурсы:
 - Oculus Developer Center (https://developer.oculus.com/)
 - Google AR & VR (https://developers.google.com/ar)